Câu hỏi:
01/02/2024 47Cho hình vẽ
Giá trị của m để tia Oz là tia phân giác của \(\widehat {{\rm{yOt}}}\) là:
A. m = 50;
B. m = 55;
C. m = 60;
D. m = 65.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Để tia Oz là tia phân giác của \(\widehat {{\rm{yOt}}}\) thì \(\widehat {{\rm{yOz}}} = \widehat {{\rm{zOt}}}\) (1)
Mà \(\widehat {{\rm{yOz}}} + \widehat {{\rm{zOt}}} = \widehat {{\rm{yOt}}}\) (hai góc kề nhau) (2)
Từ (1) và (2) suy ra \(\widehat {{\rm{yOz}}} = \widehat {{\rm{zOt}}} = \frac{{\widehat {{\rm{yOt}}}}}{2}\)
Suy ra \(\widehat {{\rm{yOt}}} = 2\widehat {{\rm{zOt}}} = 2.65^\circ = 130^\circ \)
Ta lại có \(\widehat {xOy} + \widehat {{\rm{yOt}}} = 180^\circ \) (hai góc kề bù)
Suy ra \(\widehat {{\rm{xOy}}} = 180^\circ - \widehat {yOt} = 180^\circ - 130^\circ = 50^\circ \)
Do đó m = 50
Vậy ta chọn phương án A.
Hướng dẫn giải
Đáp án đúng là: A
Để tia Oz là tia phân giác của \(\widehat {{\rm{yOt}}}\) thì \(\widehat {{\rm{yOz}}} = \widehat {{\rm{zOt}}}\) (1)
Mà \(\widehat {{\rm{yOz}}} + \widehat {{\rm{zOt}}} = \widehat {{\rm{yOt}}}\) (hai góc kề nhau) (2)
Từ (1) và (2) suy ra \(\widehat {{\rm{yOz}}} = \widehat {{\rm{zOt}}} = \frac{{\widehat {{\rm{yOt}}}}}{2}\)
Suy ra \(\widehat {{\rm{yOt}}} = 2\widehat {{\rm{zOt}}} = 2.65^\circ = 130^\circ \)
Ta lại có \(\widehat {xOy} + \widehat {{\rm{yOt}}} = 180^\circ \) (hai góc kề bù)
Suy ra \(\widehat {{\rm{xOy}}} = 180^\circ - \widehat {yOt} = 180^\circ - 130^\circ = 50^\circ \)
Do đó m = 50
Vậy ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình vẽ, biết rằng OB là tia phân giác của \(\widehat {{\rm{AOC}}}\).
Số đo của \(\widehat {{\rm{BOC}}}\)là
Câu 3:
Cho hình vẽ. Biết rằng x // y; đường thẳng z cắt hai đường thẳng x, y lần lượt tại A, B sao cho \({\widehat {\rm{A}}_1} = 60^\circ \).
Số đó của \({\widehat {\rm{B}}_2}\) là:
Câu 4:
Cho hình vẽ, biết rằng \(\widehat {{\rm{xOy}}} = 110^\circ \) và Oz là phân giác của \(\widehat {{\rm{yOt}}}\).
Số đo của \(\widehat {{\rm{xOz}}}\)là
Câu 6:
Một định lí được minh họa bởi hình vẽ:
Định lí có giả thiết và kết luận như sau:
Định lí được phát biểu thành lời là: