Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng đi qua đỉnh hình

Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng đi qua đỉnh hình nón và cắt hình nón theo một thiết diện là tam giác vuông SAB có diện tích bằng 4a2. Góc giữa trục SO và mặt phẳng (SAB) bằng 30°. Tính diện tích xung quanh của hình nón đã cho.

Trả lời
Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng đi qua đỉnh hình  (ảnh 1)

ΔSAB có SA = SB đều là đường sinh nên ΔSAB  cân đỉnh S.

Gọi I là trung điểm của AB

SI AB, \(SI = \frac{{AB}}{2}\)

Áp dụng hệ thức lượng vào ΔSIO vuông tại O:

cos\[\widehat {ISO} = \frac{{SO}}{{SI}}\] SI = \(\frac{{SO}}{{\cos 30^\circ }}\)

AB =\(\frac{{2SO}}{{\cos 30^\circ }}\)

SSAB = \(\frac{1}{2}.SI.AB = \frac{{S{O^2}}}{{{{\cos }^2}30^\circ }} = 4{a^2}\)

SO = \(a\sqrt 3 \)

AI = \(\frac{{AB}}{2} = 2a\)

IO = SO.tan30° = a

Áp dụng định lý Pytago vào tam giác OAI và SOA vuông ta có:

AO = \(\sqrt {A{I^2} + I{O^2}} = a\sqrt 5 \)

AS = \(\sqrt {S{O^2} + O{A^2}} = 2a\sqrt 2 \)

Sxq = π.OA.SA = π.\[a\sqrt 5 .2a\sqrt 2 = 2\pi {a^2}\sqrt {10} \].

Câu hỏi cùng chủ đề

Xem tất cả