Gọi S là đỉnh của hình nón và O là tâm của đường tròn đáy
Giả sử mặt phẳng (α) cắt hình nón theo một thiết diện là tam giác SAB cân tại S
Theo giả thiết ta có: SO = 5a, OA = OB = 12a và AB = 10a
Gọi M là trung điểm của AB
Suy ra \(MA = MB = \frac{{AB}}{2} = \frac{{10{\rm{a}}}}{2} = 5{\rm{a}}\)
Tam giác OAB cân tại O có OM là trung tuyến
Suy ra OM là đường cao. Hay OM ⊥ AB
Vì tam giác AOM vuông tại M nên \(O{M^2} = O{A^2} - M{A^2} = 144{{\rm{a}}^2} - 25{{\rm{a}}^2} = 119{{\rm{a}}^2}\)
Vì tam giác SOM vuông tại O nên \[{\rm{S}}M = \sqrt {S{O^2} + O{M^2}} = \sqrt {25{{\rm{a}}^2} + 119{{\rm{a}}^2}} = 12{\rm{a}}\]
Tam giác SAB cân tại S có SM là trung tuyến
Suy ra SM là đường cao
Do đó diện tích tam giác SAB là \[S = \frac{1}{2}SM.AB = \frac{1}{2}.12{\rm{a}}.10{\rm{a}} = 60{a^2}\]
Vậy ta chọn đáp án C.