Cho hình hộp ABCD.A’B’C’D’. Một mặt phẳng (P) cắt các cạnh AD, BC, B’C’, A’D’ lần lượt tại
388
09/09/2023
Bài 4.34 trang 68 SBT Toán 11 Tập 1: Cho hình hộp ABCD.A’B’C’D’. Một mặt phẳng (P) cắt các cạnh AD, BC, B’C’, A’D’ lần lượt tại E, F, G, H. Chứng minh rằng tứ giác EFGH là hình bình hành.
Trả lời
Vì hai mặt phẳng (ABCD) và (A’B’C’D’) của hình hộp song song với nhau nên giao tuyến của mặt phẳng (EFGH) và hai mặt phẳng đó song song với nhau, tức là EF//GH
Vì hai mặt phẳng (AA’D’D) và (B’B’C’B) của hình hộp song song với nhau nên giao tuyến của mặt phẳng (EFGH) và hai mặt phẳng đó song song với nhau, tức là EH//GF
Tứ giác EFGH có: EF//GH, EH//GF nên tứ giác EFGH là hình bình hành.
Xem thêm các bài giải SBT Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 11: Hai đường thẳng song song
Bài 12: Đường thẳng và mặt phẳng song song
Bài 13: Hai mặt phẳng song song
Bài 14: Phép chiếu song song
Bài tập cuối chương 4
Bài 15: Giới hạn của dãy số