Cho hình hộp ABCD.A’B’C’D’. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AA’, BB’, CC
620
09/09/2023
Bài 4.62 trang 74 SBT Toán 11 Tập 1: Cho hình hộp ABCD.A’B’C’D’. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AA’, BB’, CC’, DD’. Chứng minh rằng bốn điểm M, N, P, Q đồng phẳng và MNPQ là hình bình hành.
Trả lời
Vì M, N lần lượt là trung điểm của hai cạnh AA’, BB’ của hình bình hành ABB’A’ nên MN//AB, mà AB nằm trong mặt phẳng ABCD nên MN//(ABCD)
Tương tự ta có: NP//(ABCD)
Do đó, (MNP)//(ABCD)
Tương tự ta có: (NPQ)//(ABCD)
Qua N có hai mặt phẳng (MNP) và (NPQ) cùng song song với mặt phẳng (ABCD) nên hai mặt phẳng (MNP) và (NPQ) trùng nhau, tức là bốn điểm M, N, P, Q đồng phẳng.
Chứng minh được: MN//PQ và nên tứ giác MNPQ là hình bình hành.
Xem thêm các bài giải SBT Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 13: Hai mặt phẳng song song
Bài 14: Phép chiếu song song
Bài tập cuối chương 4
Bài 15: Giới hạn của dãy số
Bài 16: Giới hạn của hàm số
Bài 17: Hàm số liên tục