Cho hình chữ nhật ABCD có O là giao điểm hai đường chéo. Gọi M, N lần lượt là trung điểm của AB, BC
81
23/02/2024
Bài 1 trang 23 Chuyên đề Toán lớp 11: Cho hình chữ nhật ABCD có O là giao điểm hai đường chéo. Gọi M, N lần lượt là trung điểm của AB, BC. Xác định phép tịnh tiến biến tam giác AMO thành tam giác ONC.
Trả lời
Vì O là giao điểm hai đường chéo của hình chữ nhật ABCD nên O là trung điểm của AC.
Suy ra (1).
Ta có M, N lần lượt là trung điểm của AB và BC nên MN là đường trung bình của tam giác ABC, suy ra MN // AC và MN = . Do đó, (2).
Từ (1) và (2) suy ra .
Khi đó, ta có phép tịnh tiến theo vectơ biến các điểm A, M, O lần lượt thành các điểm O, N, C.
Vậy phép tịnh tiến theo vectơ biến tam giác AMO thành tam giác ONC.
Xem thêm các bài giải Chuyên đề Toán lớp 11 Cánh diều hay, chi tiết khác:
Bài 1: Phép dời hình
Bài 2: Phép đồng dạng
Bài 1: Một vài yếu tố của lí thuyết đồ thị. Đường đi Euler và đường đi Hamilton
Bài 2: Một vài ứng dụng của lí thuyết đồ thị
Bài 1: Một số nội dung cơ bản về vẽ kĩ thuật
Bài 2: Đọc và vẽ bản vẽ kĩ thuật đơn giản