Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng 2a. Gọi M là trung điểm của
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng 2a. Gọi M là trung điểm của SD. Giá trị tang của góc giữa đường thẳng BM và mặt phẳng (ABCD) bằng?
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng 2a. Gọi M là trung điểm của SD. Giá trị tang của góc giữa đường thẳng BM và mặt phẳng (ABCD) bằng?
Gọi {O} = AC ∩ BD nên SO ⊥ (ABCD).
Gọi H là trung điểm của OD.
Xét ∆SOD có MH là đường trung bình nên MH // SO.
Suy ra MH ⊥ (ABCD).
Hình chiếu của đường thẳng BM trên mặt phẳng (ABCD) là BH.
Suy ra \[\widehat {\left( {BM,\left( {ABCD} \right)} \right)} = \widehat {\left( {BM,BH} \right)} = \widehat {MBH}\] là góc nhọn
Xét tam giác vuông ABD có:
\[BD = \sqrt {A{B^2} + A{D^2}} = \sqrt {{{\left( {2a} \right)}^2} + {{\left( {2a} \right)}^2}} = 2\sqrt 2 a.\]
\[ \Rightarrow BH = \frac{3}{4}BD = \frac{{3\sqrt 2 a}}{2}\]và \[OD = \frac{1}{2}BD = \sqrt 2 a.\]
Xét tam giác vuông SOD có:
\[SO = \sqrt {S{D^2} - O{D^2}} = \sqrt {{{\left( {2a} \right)}^2} - {{\left( {\sqrt 2 a} \right)}^2}} = \sqrt 2 a.\]
Suy ra \[MH = \frac{1}{2}SO = \frac{{\sqrt 2 a}}{2}.\]
Ta có \[\tan \widehat {MBH} = \frac{{MH}}{{BH}} = \frac{{\frac{{a\sqrt 2 }}{2}}}{{\frac{{a\sqrt 2 a}}{2}}} = \frac{1}{3}\].