Trong ∆ABC gọi I là trung điểm của BC.
Gọi AH là đường kính đường tròn ngoại tiếp ∆ABC.
Suy ra HB ⊥ AB, HC ⊥ AC.
Ta có: \(\left\{ {\begin{array}{*{20}{c}}{BH \bot AB}\\{SB \bot AB}\end{array}} \right.\) ⇒ AB ⊥ (SBH) ⇒ AB ⊥ SH.
Chứng minh tương tự ta có: AC ⊥ SH.
Suy ra SH ⊥ (ABC)
Trong ∆ABC kẻ đường thẳng qua B song song với AC cắt HC tại M.
Ta có: AC // BM ⇒ d(SB; AC) = d(AC; (SBM)) = d(C; (SBM)).
Ta có CH ⊥ AC ⇒ CM ⊥ BM.
Xét tam giác vuông ACH có: \(CH = AC.\tan 30^\circ = \frac{{a\sqrt 3 }}{3}.\)
Xét tam giác vuông BCM có: \(CM = BC.\cos 30^\circ = \frac{{a\sqrt 3 }}{2}.\)
CH ∩ (SBM) = M ⇒ \(\frac{{d\left( {H;\left( {SBM} \right)} \right)}}{{d\left( {C;\left( {SBM} \right)} \right)}} = \frac{{HM}}{{CM}} = 1 - \frac{{CH}}{{CM}} = 1 - \frac{{\frac{{a\sqrt 3 }}{3}}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{1}{3}\)
Trong ∆SHM kẻ HK ⊥ SM (K ∈ SM) ta có:
\(\left\{ {\begin{array}{*{20}{c}}{BM \bot HM}\\{BM \bot SH}\end{array}} \right.\) ⇒ BM ⊥ (SHM) ⇒ BM ⊥ HK
\(\left\{ {\begin{array}{*{20}{c}}{HK \bot BM}\\{HK \bot SM}\end{array}} \right.\) ⇒ HK ⊥ (SBM) ⇒ d(H; (SBM)) = HK
Ta có: \(\left( {\widehat {SA;\left( {ABC} \right)}} \right) = \left( {\widehat {SA;HA}} \right) = \widehat {SAH} = 45^\circ \)
⇒ ∆SAH vuông cân tại H
⇒ \(SH = AH = \frac{{AC}}{{\cos 30^\circ }} = \frac{{2a\sqrt 3 }}{3}\); \(HM = \frac{1}{3}CM = \frac{{a\sqrt 3 }}{6}.\)
Áp dụng hệ thức lượng trong tam giác vuông SHM ta có:
\(HK = \frac{{SH\,.\,HM}}{{\sqrt {S{H^2} + H{M^2}} }} = \frac{{\frac{{2a\sqrt 3 }}{3} \cdot \frac{{a\sqrt 3 }}{6}}}{{\sqrt {\frac{{12{a^2}}}{9} + \frac{{3{a^2}}}{{36}}} }} = \frac{{\frac{{{a^2}}}{3}}}{{\frac{{a\sqrt {51} }}{6}}} = \frac{{2a\sqrt {51} }}{{51}}.\)
Vậy \(d\left( {SB;AC} \right) = \frac{{2a\sqrt {51} }}{{17}}.\)