Cho hình chóp S.ABCD có đáy là hình chữ nhật và SA vuông góc với (ABCD)

Bài 7.7 trang 36 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy là hình chữ nhật và SAABCD. Gọi M, N tương ứng là hình chiếu của A trên SB, SD. Chứng minh rằng: AMSBC,  ANSCD,  SCAMN.

 

 

Trả lời

Bài 7.7 trang 36 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

- Vì SA ⊥ (ABCD) nên SA ⊥ BC.

Do ABCD là hình chữ nhật nên BC ⊥ AB mà SA ⊥ BC nên BC ⊥ (SAB), suy ra BC ⊥ AM.

Lại có, M là hình chiếu của A trên SB nên AM ⊥ SB.

Vì AM ⊥ SB và BC ⊥ AM nên AM ⊥ (SBC).

- Vì SA ⊥ (ABCD) nên SA ⊥ CD.

Do ABCD là hình chữ nhật nên AD ⊥ CD.

Vì AD ⊥ CD và SA ⊥ CD nên CD ⊥ (SAD), suy ra CD ⊥ AN.

Do N là hình chiếu của A trên SD nên AN ⊥ SD.

Vì AN ⊥ SD và CD ⊥ AN nên AN ⊥ (SCD).

- Do AM ⊥ (SBC) nên AM ⊥ SC và AN ⊥ (SCD) nên AN ⊥ SC.

Vì AM ⊥ SC và AN ⊥ SC nên SC ⊥ (AMN).

Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả