Cho hình chóp S.ABCD có đáy ABCD là một hình vuông, SA ⊥ (ABCD)

Luyện tập 4 trang 36 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là một hình vuông, SA ⊥ (ABCD). Kẻ AH vuông góc với SC (H thuộc SC), BM vuông góc với SC (M thuộc SC). Chứng minh rằng SC ⊥ (MBD) và AH // (MBD).

Trả lời

Luyện tập 4 trang 36 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Vì ABCD là hình vuông nên AC ⊥ BD.

Vì SA ⊥ (ABCD) nên SA ⊥ BD mà AC ⊥ BD nên BD ⊥ (SAC).

Do BD ⊥ (SAC) nên BD ⊥ SC.

Vì BM ⊥ SC mà BD ⊥ SC nên SC ⊥ (BMD).

Gọi O là giao điểm của AC và BD.

Vì SC ⊥ (BMD) nên SC ⊥ OM.

Lại có AH ⊥ SC và SC ⊥ OM nên AH // OM.

Vì AH // OM và OM  (MBD) nên AH // (MBD)

Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả