Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d giữa hai đường thẳng SA và BD.
Gọi I là trung điểm của AD nên suy ra SI ^ AD Þ SI ^ (ABCD) và .
Kẻ Ax // BD.
Do đó d(BD; SA) = d(BD; (SAx)) = d(D; (SAx)) = 2d(I; (SAx))
Kẻ IE ^ Ax, kẻ IK ^ SE (1) ta có:
Từ (1) và (2) suy ra IK ^ (SAx)
Khi đó d(I; (SAx)) = IK
Gọi F là hình chiếu của I trên BD, ta dễ dàng chứng minh được:
ΔIAE = ΔIDF (cạnh huyền – góc nhọn)
Thật vậy, xét ΔIAE vuông tại E và ΔIDF vuông tại F có:
(do Ax // BD, hai góc ở vị trí so le trong)
IA = ID (Do I là trung điểm của AD)
Suy ra ΔIAE = ΔIDF (cạnh huyền – góc nhọn)
Tam giác vuông SIE, có
Vậy .