Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và SA = 2a. Gọi M là trung điểm của SD. Tính khoảng cách d giữa đường thẳng SB và mặt phẳng (ACM).

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và SA = 2a. Gọi M là trung điểm của SD. Tính khoảng cách d giữa đường thẳng SB và mặt phẳng (ACM).

Trả lời
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và SA = 2a. Gọi M là trung điểm của SD. Tính khoảng cách d giữa đường thẳng SB và mặt phẳng (ACM). (ảnh 1)

Chọn hệ trục tọa độ như hình vẽ, trong đó:

A(0; 0; 0); B(a; 0; 0); C(a; a; 0); D(0; a; 0); S(0; 0; 2a)

Vì M là trung điểm của SD nên M(0; a2; a)

Gọi O là giao điểm của AC, BD

Khi đó MO // SB nên SB // (ACM)

Do đó d(SB, (ACM)) = d(B, (ACM))

Ta có: AC,AM=a2;a2;a22

Suy ra n(2;  2;  1) là một vectơ chỉ phương của mặt phẳng (ACM).

Khi đó phương trình mặt phẳng (ACM): 2x 2y + z = 0.

Do đó d(SB, (ACM)) = d(B, (ACM)) = 2a3.

Vậy khoảng cách d giữa đường thẳng SB và mặt phẳng (ACM) là 2a3.

Câu hỏi cùng chủ đề

Xem tất cả