Cho hình chóp S.ABCD có đáy ABCD là hình vuông bằng cạnh bằng a, tam giác SAB là tam giác đều, SC = SD

Cho hình chóp S.ABCD có đáy ABCD là hình vuông bằng cạnh bằng a, tam giác SAB là tam giác đều, SC = SD = a2 . Tính thể tích V của khối chóp S.ABCD?

Trả lời

Media VietJack

Gọi M, N là trung điểm của AB và CD

MN là đường trung bình của ABCD nên MN // AD // BC

Mà AB AD nên MN AB

Vì ∆SAB đều nên SM AB

Suy ra: AB (SMN) (SMN) (ABCD)

Lại có: ∆SAB đều SM = a32

Tam giác SCD cân nên: SN CD

Áp dụng định lý Pytago trong tam giác SCN ta có:

SN = SC2CD22=2a2a24  a72

Kẻ SH MN (H thuộc MN)

Suy ra: SH (ABCD)

Mặt khác: SMNSppSMpSNpMN  (công thức Hê–rông)

Mà p = (SM + SN + MN) : 2 = a32+a72+a:2=a3+a7+2a4

Suy ra: SMNSppSMpSNpMN  a234

Mà SMNS = 12.SH.MN . Suy ra: SH = 2SMNSMN=2.a234a=a32

Thể tích khối chóp S.ABCD là: VS.ABCD = 13.SH.SABCD=13.a32.a2=a336

Câu hỏi cùng chủ đề

Xem tất cả