Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC\,{\rm{//}}\,(\alpha ),BC \subset (ABCD),BC \subset (SBC)}\\{(\alpha ) \cap (ABCD) = MN}\\{(\alpha ) \cap (SBC) = PQ}\end{array}} \right. \Rightarrow MN\,{\rm{//}}\,BC\,{\rm{//}}\,PQ\quad \)
Suy ra tứ giác MNPQ là hình thang (1)
Vì \(\left\{ {\begin{array}{*{20}{l}}{(\alpha ) \cap (SAB) = MQ}\\{(\alpha )\,{\rm{//}}\,SA,SA \subset (SAB)}\end{array} \Rightarrow SA\,{\rm{//}}\,MQ} \right.\)
Áp dụng định lý Ta – lét ta có:
\(\begin{array}{l}\frac{{AM}}{{AB}} = \frac{{SQ}}{{SB}} = \frac{{SP}}{{SC}};\frac{{AM}}{{AB}} = \frac{{DN}}{{DC}}\\ \Rightarrow \frac{{SP}}{{SC}} = \frac{{DN}}{{DC}} \Rightarrow NP\,{\rm{//}}\,SD\end{array}\)
Vì \(\left\{ {\begin{array}{*{20}{l}}{MQ\,{\rm{//}}\,SA}\\{MN\,{\rm{//}}\,BC\,{\rm{//}}\,AD}\end{array} \Rightarrow \widehat {NMQ} = \widehat {SAD}} \right.{\rm{ }}\)
Mà tam giác SAD đều nên \(\widehat {SA{\rm{D}}} = 60^\circ \)
Suy ra \(\widehat {NMQ} = 60^\circ \)
Chứng minh tương tự ta có \(\widehat {MNP} = \widehat {SDA} = 60^\circ \)
Do đó \(\widehat {NMQ} = \widehat {MNP}\) (2)
Từ (1) và (2) suy ra MNPQ là hình thang cân
Vậy đáp án cần chọn là: D.