Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = a. Cạnh bên SA

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = a. Cạnh bên SA = \[a\sqrt 2 \], hình chiếu của điểm S lên mặt phẳng đáy trùng với trung điểm của cạnh huyền AC. Bán kính mặt cầu ngoại tiếp khối chóp S.ABC.

Trả lời
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = a. Cạnh bên SA  (ảnh 1)

ΔABC vuông cân tại B có AB = a

\[ \Rightarrow AC = a\sqrt 2 \]

Gọi M là trung điểm AC

\[ \Rightarrow MA = MB = MC = \frac{1}{2}AC = a\sqrt 2 ;\,\,SM \bot (ABC)\]

Þ SM là trục của mặt phẳng đáy (ABC)

Gọi N là trung điểm SA

Trong mp(SAM) kẻ NI SA (I SM)

Þ I là tâm mặt cầu ngoại tiếp khối chóp S.ABC

Ta có: ΔSNI ΔSMA (g.g)

\[ \Rightarrow \frac{{SN}}{{SM}} = \frac{{SI}}{{SA}}\]

\[ \Rightarrow SI = R = \frac{{SA.SN}}{{SM}}\]

\[ \Rightarrow R = \frac{{S{A^2}}}{{2SM}} = \frac{{S{A^2}}}{{2\sqrt {S{A^2} - A{M^2}} }}\]

\[ \Rightarrow R = \frac{{a\sqrt 6 }}{3}\]

Vậy \[R = \frac{{a\sqrt 6 }}{3}\].

Câu hỏi cùng chủ đề

Xem tất cả