Cho hình bình hành ABCD tâm O. M là một điểm tuỳ ý thuộc cạnh BC, khác B và C. MO cắt cạnh AD tại N
88
11/01/2024
Bài 4.8 trang 50 SBT Toán 10 Tập 1: Cho hình bình hành ABCD tâm O. M là một điểm tuỳ ý thuộc cạnh BC, khác B và C. MO cắt cạnh AD tại N.
a) Chứng minh rằng O là trung điểm MN.
b) Gọi G là trọng tâm tam giác BCD. Chứng minh rằng G cũng là trọng tâm tam giác MNC.
Trả lời
a) Vì ABCD là hình bình hành tâm O
Nên O là trung điểm của AC và BD và
Xét ∆ODN và ∆OBM có:
OD = OB (do O là trung điểm của BD),
(hai góc đối đỉnh),
(do )
∆ODN = ∆OBM (g.c.g)
ON = OM (hai cạnh tương ứng)
O là trung điểm của NM.
Vậy O là trung điểm của NM.
b) Vì G là trọng tâm ∆BCD nên
(quy tắc hiệu)
(*)
Ta có: O là trung điểm của NM (câu a), O là trung điểm của BD (câu a)
BMDN là hình bình hành
Thay vào (*) ta được
Do đó
G là trọng tâm tam giác MNC.
Vậy G là trọng tâm tam giác MNC.
Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài tập cuối chương 3
Bài 7: Các khái niệm mở đầu
Bài 8: Tổng và hiệu của hai vectơ
Bài 9: Tích của một vectơ với một số
Bài 10: Vectơ trong mặt phẳng tọa độ
Bài 11: Tích vô hướng của hai vectơ