Cho hai vectơ a và b không cùng phương. Chứng minh rằng: |a| - |b| < |a + b| < |a| + |b|

Bài 4.7 trang 50 SBT Toán 10 Tập 1: Cho hai vectơ a và b không cùng phương. Chứng minh rằng:

ab<a+b<a+b

 

Trả lời

Giả sử ba điểm A, B, C thoả mãn: a=AB,b=BC 

Sách bài tập Toán 10 Bài 8: Tổng và hiệu của hai vectơ - Kết nối tri thức (ảnh 1)

Khi đó ta có: a+b=AB+BC=AC (quy tắc ba điểm)

Do đó:

Sách bài tập Toán 10 Bài 8: Tổng và hiệu của hai vectơ - Kết nối tri thức (ảnh 1)

Mặt khác: xét tam giác ABC, theo bất đẳng thức trong tam giác ta có:

AB – BC < AC < AB + BC

Hay ab<a+b<a+b 

Vậy ab<a+b<a+b.

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài tập cuối chương 3

Bài 7: Các khái niệm mở đầu

Bài 8: Tổng và hiệu của hai vectơ

Bài 9: Tích của một vectơ với một số

Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 11: Tích vô hướng của hai vectơ

Câu hỏi cùng chủ đề

Xem tất cả