Câu hỏi:
25/01/2024 58Cho hình bình hành ABCD như hình vẽ.
Chọn phương án đúng.
A. \[\widehat {ABC}\] và \[\widehat {ADC}\] là hai góc kề bù;
B. \[\widehat {AOB}\] và \[\widehat {BOC}\] là hai góc so le trong;
C. \[\widehat {BAD}\] và \[\widehat {ADC}\] là hai góc đồng vị;
D. \[\widehat {AOB}\] và \[\widehat {DOC}\] là hai góc đối đỉnh.
Trả lời:
Đáp án đúng là: D
\[\widehat {ABC}\] và \[\widehat {ADC}\] là hai góc kề bù là phát biểu sai vì hai góc này không chung đỉnh.
\[\widehat {AOB}\] và \[\widehat {BOC}\] là hai góc so le trong là phát biểu sai, vì \[\widehat {AOB}\] và \[\widehat {BOC}\] là hai góc kề bù;
\[\widehat {BAD}\] và \[\widehat {ADC}\] là hai góc đồng vị là phát biểu sai, vì \[\widehat {BAD}\] và \[\widehat {ADC}\] là hai góc trong cùng phía.
\[\widehat {AOB}\] và \[\widehat {DOC}\] là hai góc đối đỉnh là phát biểu đúng, chọn phương án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho \[\widehat {mOn}\] và \[\widehat {nOp}\] là hai góc kề bù. Biết \[\widehat {mOn} = 124^\circ \] và Ot là tia phân giác của góc nOp. Số đo góc mOt là:
Câu 2:
Cho hình vẽ. Tính góc FEC, biết EF // DC và \[\widehat {ECB} = 60^\circ \]:
Câu 3:
Cho hình vẽ
Biết x // y, \[\widehat {{H_3}} = 39^\circ .\]Tính \[\widehat {{H_3}} + \widehat {{K_4}}\].
Câu 4:
Cho ba đường thẳng phân biệt a, b và c, biết c // a và c // b. Kết luận nào đúng:
Câu 5:
Cho định lí: “Hai tia phân giác của hai góc kề bù tạo thành một góc vuông” và hình vẽ.
Kết luận của định lí là:
Câu 10:
“Nếu hai góc đối đỉnh thì hai góc đó bằng nhau”
Hình minh họa nội dung định lí trên là
Câu 11:
Hai đường thẳng mn và m’n’ cắt nhau tại điểm O. Góc đối đỉnh của \[\widehat {mOn'}\] là:
Câu 12:
Biết một cặp góc so le trong \[\widehat {{A_4}}\; = \widehat {{B_2}} = 110^\circ \]. Tính số đo của cặp góc so le trong còn lại:
Câu 14:
Cho hình bình hành ABCD như hình vẽ. Biết IJ // DC và \[\widehat {JOC} = 34^\circ \].
Số đo góc OCD là:
Câu 15:
Cho hình vẽ,
Biết \[\widehat {aOb} = 70^\circ \] và tia Ot là tia phân giác góc xOy. Tính x, y.