Câu hỏi:
25/01/2024 70Cho \[\widehat {mOn}\] và \[\widehat {nOp}\] là hai góc kề bù. Biết \[\widehat {mOn} = 124^\circ \] và Ot là tia phân giác của góc nOp. Số đo góc mOt là:
A. 152°;
B. 143°;
C. 45°;
D. 35°.
Trả lời:
Đáp án đúng là: A
Vì \[\widehat {mOn}\] và \[\widehat {nOp}\] là hai góc kề bù nên \[\widehat {mOn} + \widehat {nOp} = 180^\circ \]
Suy ra \[\widehat {nOp} = 180^\circ - \widehat {mOn}\]
Hay \[\widehat {nOp} = 180^\circ - 124^\circ = 56^\circ \]
Mà \[\widehat {nOt} = \widehat {tOp} = \frac{{\widehat {nOp}}}{2}\] (vì Ot là tia phân giác góc nOp)
Suy ra \[\widehat {nOt} = \widehat {tOp} = \frac{{\widehat {nOp}}}{2} = \frac{{56^\circ }}{2} = 28^\circ \]
Vì hai góc mOn và nOp là hai góc kề bù nên tia On nằm giữa hai tia Om và Op; tia Ot là phân giác của góc nOp nên tia Ot nằm giữa hai tia On và Op.
Do đó tia On nằm giữa hai tia Om và Ot.
Suy ra \[\widehat {mOt} = \widehat {mOn} + \widehat {nOt}\] suy ra \[\widehat {mOt} = 124^\circ + 28^\circ = 152^\circ \].
Do đó \[\widehat {mOt} = 152^\circ \].
Vậy chọn đáp án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình vẽ. Tính góc FEC, biết EF // DC và \[\widehat {ECB} = 60^\circ \]:
Câu 2:
Cho hình vẽ
Biết x // y, \[\widehat {{H_3}} = 39^\circ .\]Tính \[\widehat {{H_3}} + \widehat {{K_4}}\].
Câu 3:
Cho ba đường thẳng phân biệt a, b và c, biết c // a và c // b. Kết luận nào đúng:
Câu 4:
Cho định lí: “Hai tia phân giác của hai góc kề bù tạo thành một góc vuông” và hình vẽ.
Kết luận của định lí là:
Câu 9:
“Nếu hai góc đối đỉnh thì hai góc đó bằng nhau”
Hình minh họa nội dung định lí trên là
Câu 10:
Hai đường thẳng mn và m’n’ cắt nhau tại điểm O. Góc đối đỉnh của \[\widehat {mOn'}\] là:
Câu 11:
Biết một cặp góc so le trong \[\widehat {{A_4}}\; = \widehat {{B_2}} = 110^\circ \]. Tính số đo của cặp góc so le trong còn lại:
Câu 13:
Cho hình bình hành ABCD như hình vẽ. Biết IJ // DC và \[\widehat {JOC} = 34^\circ \].
Số đo góc OCD là:
Câu 14:
Cho hình vẽ,
Biết \[\widehat {aOb} = 70^\circ \] và tia Ot là tia phân giác góc xOy. Tính x, y.