Câu hỏi:
29/01/2024 51Cho hình bình hành ABCD như hình vẽ. Biết EF // DC, \[\widehat {DAB} = 65^\circ \] và \[\widehat {AFE} = 35^\circ \]. Số đo góc KAD là:
A. 60°;
B. 45°;
C. 30°;
D. 125°.
Trả lời:
Đáp án đúng là: C
Vì ABCD là hình bình hành nên AB // DC do đó \(\widehat {BAK} = \widehat {AKD}\) (hai góc so le trong).
Vì EF // DC nên \[\widehat {AFE} = \widehat {AKD}\] (hai góc đồng vị)
Suy ra \(\widehat {BAK} = \widehat {AFE}\) (cùng bằng góc \(\widehat {AKD}\))
Mà \[\widehat {AFE} = 35^\circ \Rightarrow \widehat {BAK} = 35^\circ \]
Mà \[\widehat {BAK} + \widehat {KAD} = \widehat {DAB}\] (vì tia AK nằm giữa hai tia AB và AD)
\[ \Rightarrow \widehat {KAD} = \widehat {DAB} - \widehat {KAB} = 65^\circ - 35^\circ = 30^\circ \]
Vậy \[\widehat {KAD} = 30^\circ \].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho \[\widehat {mOn}\] và \[\widehat {nOp}\] là hai góc kề bù. Biết \[\widehat {mOn} = 110^\circ \] và Ot là tia phân giác của góc nOp. Số đo góc mOt là:
Câu 2:
Cho hình vẽ. Tính góc FEC, biết EF // BC và \[\widehat {ECB} = 40^\circ \]:
Câu 4:
Cho \(\widehat {xOy} = 120^\circ \), tia Ot là tia phân giác của góc xOy. Tính số đo góc xOt
Câu 5:
Hai đường thẳng xy và x’y’ cắt nhau tại O. Góc đối đỉnh của \[\widehat {xOy'}\] là:
Câu 6:
Cho định lí: “Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng còn lại”.
Hình vẽ minh hoạ cho định lí trên là:
Câu 10:
Cho hình chữ nhật ABCD như hình vẽ. Biết IJ // AB và \[\widehat {JOC} = 30^\circ \].
Số đo góc BAC là:
Câu 14:
Cho định lí: “Hai tia phân giác của hai góc kề bù tạo thành một góc vuông”. Giả thiết, kết luận của định lí là:
Câu 15:
Cho góc AOB và OI tia phân giác của góc đó. Vẽ tia phân giác OJ của góc BOI. Biết \[\widehat {IOJ} = 25^\circ \]. Số đo góc AOB là: