Câu hỏi:
29/01/2024 72Cho \[\widehat {mOn}\] và \[\widehat {nOp}\] là hai góc kề bù. Biết \[\widehat {mOn} = 110^\circ \] và Ot là tia phân giác của góc nOp. Số đo góc mOt là:
A. 145°;
B. 135°;
C. 45°;
D. 35°.
Trả lời:
Đáp án đúng là: A
Vì \[\widehat {mOn}\] và \[\widehat {nOp}\] là hai góc kề bù nên \[\widehat {mOn} + \widehat {nOp} = 180^\circ \]
Suy ra \[\widehat {nOp} = 180^\circ - \widehat {mOn}\]
Hay \[\widehat {nOp} = 180^\circ - 110^\circ = 70^\circ \]
Mà \[\widehat {nOt} = \widehat {tOp} = \frac{{\widehat {nOp}}}{2}\] (vì Ot là tia phân giác góc nOp)
Suy ra \[\widehat {nOt} = \widehat {tOp} = \frac{{\widehat {nOp}}}{2} = \frac{{70^\circ }}{2} = 35^\circ \]
Vì hai góc mOn và nOp là hai góc kề bù nên tia On nằm giữa hai tia Om và Op; tia Ot là phân giác của góc nOp nên tia Ot nằm giữa hai tia On và Op.
Do đó tia Ot nằm giữa hai tia On nằm giữa hai tia Om và Ot
Suy ra \[\widehat {mOt} = \widehat {mOn} + \widehat {nOt}\] suy ra \[\widehat {mOt} = 110^\circ + 35^\circ = 145^\circ \]
Vậy \[\widehat {mOt} = 145^\circ \].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình vẽ. Tính góc FEC, biết EF // BC và \[\widehat {ECB} = 40^\circ \]:
Câu 3:
Cho định lí: “Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng còn lại”.
Hình vẽ minh hoạ cho định lí trên là:
Câu 4:
Cho \(\widehat {xOy} = 120^\circ \), tia Ot là tia phân giác của góc xOy. Tính số đo góc xOt
Câu 5:
Hai đường thẳng xy và x’y’ cắt nhau tại O. Góc đối đỉnh của \[\widehat {xOy'}\] là:
Câu 9:
Cho hình chữ nhật ABCD như hình vẽ. Biết IJ // AB và \[\widehat {JOC} = 30^\circ \].
Số đo góc BAC là:
Câu 13:
Cho các phát biểu sau:
(1) Hai góc dối đỉnh thì bằng nhau;
(2) Hai bằng nhau thì đối đỉnh;
(3) Hai đường thẳng song song thì cắt nhau;
(4) Nếu N là trung điểm của HK thì NH = NK;
(5) Nếu NH = NK thì N là trung điểm của HK.
Có bao nhiêu phát biểu đúng?
Câu 15:
Cho định lí: “Hai tia phân giác của hai góc kề bù tạo thành một góc vuông”. Giả thiết, kết luận của định lí là: