Cho hình ABCD (AB // DC). Một đường thẳng song song với hai đáy cắt các đoạn thẳng AD, AC

Bài 4.5 trang 48 SBT Toán 8 Tập 1: Cho hình ABCD (AB // DC). Một đường thẳng song song với hai đáy cắt các đoạn thẳng AD, AC, BC theo thứ tự tại M, I, N. Chứng minh rằng:

a) AMMD=BNNC;

b) AMAD+CNCB=1.

Trả lời

Cho hình ABCD (AB // DC). Một đường thẳng song song với hai đáy cắt các đoạn thẳng AD, AC

a) Xét tam giác ADC, MI // DC nên theo định lí Thalès ta có: AMMD=AIIC.

Xét tam giác ABC, IN // AB nên theo định lí Thalès ta có: AIIC=BNNC.

Từ đó, suy ra AMMD=BNNC.

b) Xét tam giác ADC, MI // DC nên theo định lí Thalès ta có: AMAD=AIAC.

Xét tam giác ABC, IN // AB nên theo định lí Thalès ta có: CNCB=CICA.

Khi đó AMAD+CNCB=AIAC+CICA=AI+CICA=ACCA=1.

Xem thêm các bài giải Toán lớp 8 sách Kết nối tri thức hay, chi tiết khác:

Bài 14: Hình thoi và hình vuông

Bài tập cuối chương 3

Bài 15: Định lí Thalès trong tam giác

Bài 16: Đường trung bình của tam giác

Bài 17: Tính chất đường phân giác của tam giác

Bài tập cuối chương 4