Cho hàm số y = -x^3 + 3x^2 + 3mx - 1, tìm tất cả các giá trị của tham số m để hàm số

Cho hàm số y = – x3 + 3x2 + 3mx – 1, tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (0; +∞) 

A. m < 1

B. m ≥ 1

C. m ≤ –1

D. m ≥ –1.

Trả lời

Đáp án đúng là: C

Ta có y’ = – 3x2 + 6x + 3m ≤ 0, x > 0

3m ≤ 3x2 – 6x, x > 0

3m ≤ 3(x2 – 2x + 1) – 3, x > 0

3m ≤ 3(x – 1)2 – 3, x > 0

Vì 3(x – 1)2 ≥ 0 với mọi x

Nên 3(x – 1)2 – 3 ≥ –3 với mọi x

Suy ra 3x2 – 6x nhỏ nhất bằng –3 khi x = 1

Do đó 3m ≤ –3 m ≤ –1

Vậy ta chọn đáp án C.

Câu hỏi cùng chủ đề

Xem tất cả