Cho hàm số y = f(x) = 2/3x + 5. Tìm toạ độ giao điểm của đồ thị hàm số đã cho với trục Ox và trục Oy.

Cho hàm số \[y = f(x) = \frac{2}{3}x + 5\]. Tìm toạ độ giao điểm của đồ thị hàm số đã cho với trục Ox và trục Oy.

Trả lời

Lời giải

Đồ thị hàm số \[y = f(x) = \frac{2}{3}x + 5\] cắt Ox tại M nên yM = 0.

Do đó: \[\frac{2}{3}x + 5 = 0 \Leftrightarrow \frac{2}{3}x = - 5 \Leftrightarrow x = \frac{{ - 15}}{2}\].

Suy ra đồ thị hàm số \[y = f(x) = \frac{2}{3}x + 5\] cắt Ox tại \[M\left( {\frac{{ - 15}}{2};0} \right)\].

Đồ thị hàm số \[y = f(x) = \frac{2}{3}x + 5\] cắt Oy tại N nên xN = 0.

Thay xN = 0 vào f(x) ta có: \[y = \frac{2}{3} \cdot 0 + 5\]= 5.

Suy ra đồ thị hàm số \[y = f(x) = \frac{2}{3}x + 5\] cắt Oy tại N(0; 5).

Vậy đồ thị hàm số \[y = f(x) = \frac{2}{3}x + 5\] cắt Ox, Oy tại \[M\left( {\frac{{ - 15}}{2};0} \right)\] và N(0; 5).

Câu hỏi cùng chủ đề

Xem tất cả