Cho hai hàm số f (x) = ax^3 + bx^2 + cx − 2 và g (x) = dx^2 + ex + 2

Cho hai hàm số f (x) = ax3 + bx2 + cx − 2 và g (x) = dx2 + ex + 2 (a, b, c, d, e Î ℝ). Biết rằng đồ thị của hàm số y = f (x) và y = g (x) cắt nhau tại ba điểm có hoành độ lần lượt là −2; −1; 1 (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng

Media VietJack

Trả lời

Phương trình hoành độ giao điểm của đồ thị f (x) và g (x) là:

ax3 + bx2 + cx − 2 = dx2 + ex + 2

Û ax3 + (b − d)x2 + (c − e)x − 4 = 0 (1)

Vì phương trình (1) có các nghiệm −2; −1; 1 nên: 

a.23+bd.22+ce.24=0a.13+bd.12+ce.14=0a.13+bd.12+ce.14=0

8a+4bd2ce4=0a+bdce4=0a+bd+ce4=0

3a3bd+6=02bd8=0a+bd+ce4=0

a=bd2bd=4a+bd+ce=4

a=2bd=4ce=4abda=2bd=4ce=2

Diện tích hình phẳng cần tìm là: 

S=21fxgxdx+11gxfxdx

=21ax3+bdx2+cex4dx+11ax3bdx2cex+4dx

=212x3+4x22x4dx+112x34x2+2x+4dx

=x42+4x33x24x21+x424x33+x2+4x11

=142+4.133124.12424.233+224.2

1424.133+12+4.1+142+4.133124.1

=12431+48+323+4+81243+1+4+12431+4

=376

Câu hỏi cùng chủ đề

Xem tất cả