Câu hỏi:
29/12/2023 111Cho hai đường thẳng ∆1 và ∆2 có phương trình lần lượt là ax + by + c = 0 và dx + ey + f = 0. Xét hệ \(\left\{ \begin{array}{l}ax + by + c = 0\\dx + ey + f = 0\end{array} \right.\). Khi đó ∆1 cắt ∆2 khi và chỉ khi:
A. Hệ phương trình đã cho có nghiệm duy nhất;
B. Hệ phương trình đã cho vô nghiệm;
C. Hệ phương trình đã cho có vô số nghiệm;
D. Hệ phương trình đã cho có hai nghiệm phân biệt.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Ta có:
⦁ ∆1 cắt ∆2 khi và chỉ khi hệ phương trình đã cho có nghiệm duy nhất;
⦁ ∆1 // ∆2 khi và chỉ khi hệ phương trình đã cho vô nghiệm;
⦁ ∆1 trùng ∆2 khi và chỉ khi hệ phương trình đã cho có vô số nghiệm.
Do đó ta chọn phương án A.
Hướng dẫn giải
Đáp án đúng là: A
Ta có:
⦁ ∆1 cắt ∆2 khi và chỉ khi hệ phương trình đã cho có nghiệm duy nhất;
⦁ ∆1 // ∆2 khi và chỉ khi hệ phương trình đã cho vô nghiệm;
⦁ ∆1 trùng ∆2 khi và chỉ khi hệ phương trình đã cho có vô số nghiệm.
Do đó ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x + 3y + 5 = 0 và A(1; –3). Khoảng cách từ điểm A đến đường thẳng d là:
Câu 2:
Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1, d2 lần lượt có vectơ chỉ phương là \({\vec a_1}\), \({\vec a_2}\). Gọi M là một điểm nằm trên đường thẳng d1. Khi đó d1 trùng d2 khi và chỉ khi:
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng ∆1 và ∆2 có vectơ pháp tuyến lần lượt là \({\vec n_1},\,\,{\vec n_2}\). Khi đó ∆1 cắt ∆2 nhưng không vuông góc với ∆2 khi và chỉ khi:
Câu 4:
Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng ∆1 và ∆2 có vectơ pháp tuyến lần lượt là \({\vec n_1},\,\,{\vec n_2}\). Nếu \({\vec n_1}.{\vec n_2} = 0\) thì:
Câu 5:
Cho đường thẳng d1, d2 có vectơ pháp tuyến lần lượt là \[{\vec n_1} = \left( {a;b} \right),\,\,{\vec n_2} = \left( {c;d} \right)\]. Kết luận nào sau đây đúng?