Câu hỏi:
29/12/2023 132Cho hai điểm A(1; 1) và B(7; 5). Phương trình đường tròn đường kính AB là:
A. x2 + y2 + 8x + 6y – 12 = 0;
B. x2 + y2 – 8x + 6y + 12 = 0;
C. x2 + y2 – 8x – 6y + 12 = 0;
D. x2 + y2 + 8x + 6y – 12 = 0.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Gọi I là trung điểm AB. Suy ra tọa độ I(4; 3).
Ta có \(AI = \sqrt {{{\left( {4 - 1} \right)}^2} + {{\left( {3 - 1} \right)}^2}} = \sqrt {13} \).
Vì đường tròn cần tìm có đường kính là AB nên đường tròn đó nhận trung điểm I(4; 3) là tâm và có bán kính \(R = AI = \sqrt {13} \).
Suy ra phương trình đường tròn cần tìm là: (x – 4)2 + (y – 3)2 = 13.
⇔ x2 + y2 – 8x – 6y + 12 = 0.
Vậy ta chọn phương án C.
Hướng dẫn giải
Đáp án đúng là: C
Gọi I là trung điểm AB. Suy ra tọa độ I(4; 3).
Ta có \(AI = \sqrt {{{\left( {4 - 1} \right)}^2} + {{\left( {3 - 1} \right)}^2}} = \sqrt {13} \).
Vì đường tròn cần tìm có đường kính là AB nên đường tròn đó nhận trung điểm I(4; 3) là tâm và có bán kính \(R = AI = \sqrt {13} \).
Suy ra phương trình đường tròn cần tìm là: (x – 4)2 + (y – 3)2 = 13.
⇔ x2 + y2 – 8x – 6y + 12 = 0.
Vậy ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tâm của đường tròn đi qua ba điểm A(2; 1), B(2; 5), C(–2; 1) thuộc đường thẳng có phương trình:
Câu 2:
Cho đường tròn (C): (x – 2)2 + (y – 2)2 = 9. Phương trình tiếp tuyến của (C) đi qua điểm A(5; –1) là:
Câu 3:
Một đường tròn có tâm I(3; –2), tiếp xúc với đường thẳng ∆: x – 5y + 1 = 0. Bán kính của đường tròn đó bằng:
Câu 4:
Cho đường tròn (C): x2 + y2 + 2x + 4y – 20 = 0. Tìm mệnh đề sai trong các mệnh đề sau:
Câu 5:
Với giá trị nào của m thì phương trình x2 + y2 – 2(m + 2)x + 4my + 19m – 6 = 0 là phương trình đường tròn?
Câu 6:
Cho đường tròn (C): (x – 3)2 + (y – 1)2 = 10. Phương trình tiếp tuyến của (C) tại điểm A(4; 4) là: