Cho góc nhị diện có hai mặt là hai nửa mặt phẳng (P), (Q) và cạnh của góc nhị diện là đường thẳng d.

Cho góc nhị diện có hai mặt là hai nửa mặt phẳng (P), (Q) và cạnh của góc nhị diện là đường thẳng d.

Qua một điểm O trên đường thẳng d, ta kẻ hai tia Ox, Oy lần lượt thuộc hai nửa mặt phẳng (P), (Q) và cùng vuông góc với đường thẳng d. Góc xOy gọi là góc phẳng nhị diện của góc nhị diện đã cho (Hình 38).

Cho góc nhị diện có hai mặt là hai nửa mặt phẳng (P), (Q) và cạnh của góc nhị diện là đường thẳng d. (ảnh 1)

Giả sử góc x’O’y’ cũng là góc phẳng nhị diện của góc nhị diện đã cho với O’ khác O (Hình 39).

Hãy so sánh số đo của hai góc xOy và x’O’y’.

Trả lời

Xét (P) có: Ox d và Ox’ d nên Ox // O’x’.

Xét (Q) có: Oy d và Oy’ d nên Oy // O’y’.

Từ đó ta có: góc giữa đường thẳng Ox và Oy bằng góc giữa đường thẳng O’x’ và O’y’ hay số đo của hai góc xOy và x’O’y’ bằng nhau.

Câu hỏi cùng chủ đề

Xem tất cả