b) Tính số đo của góc nhị diện [B, SA, D].

b) Tính số đo của góc nhị diện [B, SA, D].

Trả lời

b) Ta có: SA (ABCD) và AB (ABCD), AD (ABCD).

Suy ra: SA AB, SA AD.

Mà AB ∩ AD = A SA.

Do đó BAD^ là góc phẳng nhị diện của góc nhị diện [B, SA, D].

Vì ABCD là hinh thoi cạnh a và AC = a nên ta có AD = AC = CD = a.

Suy ra tam giác ACD đều.

Khi đó CAD^=60°.

Ta có:BAD^=BAC^+CAD^=60°+60°=120°.

Vậy số đo của góc nhị diện [B, SA, D] bằng 120°

Câu hỏi cùng chủ đề

Xem tất cả