Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình thoi cạnh a và AC = a. a) Tính số đo của góc nhị diện [B, SA, C].
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình thoi cạnh a và AC = a.
a) Tính số đo của góc nhị diện [B, SA, C].
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình thoi cạnh a và AC = a.
a) Tính số đo của góc nhị diện [B, SA, C].
a) Ta có: SA ⊥ (ABCD) và AB ⊂ (ABCD), AC ⊂ (ABCD).
Suy ra: SA ⊥ AB, SA ⊥ AC.
Mà AB ∩ AC = A ∈ SA.
Do đó là góc phẳng nhị diện của góc nhị diện [B, SA, C].
Vì ABCD là hinh thoi cạnh a và AC = a nên ta có AB = AC = BC = a.
Suy ra tam giác ABC đều. Khi đó
Vậy số đo của góc nhị diện [B, SA, C] = 60°.