b) Chứng minh rằng AC ⊥ (SBD). Tính số đo của góc giữa đường thẳng SA và mặt phẳng (SBD).
b) Chứng minh rằng AC ⊥ (SBD). Tính số đo của góc giữa đường thẳng SA và mặt phẳng (SBD).
b) Chứng minh rằng AC ⊥ (SBD). Tính số đo của góc giữa đường thẳng SA và mặt phẳng (SBD).
b) Ta có: SO ⊥ (ABCD) và AC ⊂ (ABCD) nên SO ⊥ AC.
Vì ABCD là hình vuông nên AC ⊥ BD.
Ta có: AC ⊥ SO, AC ⊥ BD và SO ∩ BD = O trong (SBD).
Suy ra AC ⊥ (SBD).
Hay AO ⊥ (SBD) nên SO là hình chiếu của SA trên (SBD).
Suy ra góc giữa đường thẳng SA và mặt phẳng (SBD) bằng
Do ∆SAC đều nên đường cao SO đồng thời là đường phân giác của góc ASC.
Do đó
Vậy góc giữa đường thẳng SA và mặt phẳng (SBD) bằng 30°.