Cho đường tròn (O), đường kính BC = 2R, điểm A nằm ngoài đường tròn sao cho tam
Cho đường tròn (O), đường kính BC = 2R, điểm A nằm ngoài đường tròn sao cho tam giác ABC nhọn. Từ A kẻ 2 tiếp tuyến AM, AN với đường tròn (O). Gọi H là trực tâm của tam giác ABC, F là giao điểm của AH và BC. Chứng minh rằng:
a) 5 điểm A, O, M, N, F cùng nằm trên 1 đường tròn.
b) 3 điểm M, N, H thẳng hàng.
c) HA . HF = R2 – OH2.