Cho đa thức P(x) = ax3 + bx2 + cx + d. Với P(0) và P(1) là số lẻ. Chứng minh rằng P(x) không thể có nghiệm là số nguyên.
Cho đa thức P(x) = ax3 + bx2 + cx + d. Với P(0) và P(1) là số lẻ. Chứng minh rằng P(x) không thể có nghiệm là số nguyên.
Cho đa thức P(x) = ax3 + bx2 + cx + d. Với P(0) và P(1) là số lẻ. Chứng minh rằng P(x) không thể có nghiệm là số nguyên.
Ta có P(0) = a . 03 + b . 02 + c . 0 + d = d
Vì P(0) lẻ nên d lẻ
Ta có P(1) = a . 13 + b . 12 + c . 1 + d = a + b + c + d
Vì P(0) lẻ và d lẻ nên a + b + c chẵn
Suy ra a, b, c có thể nhận giá trị lẻ, lẻ, chẵn hoặc chẵn, chẵn, chẵn
Giả sử P(x) có nghiệm nguyên m. Khi đó
P(m) = am3 + bm2 + cm + d
• Nếu m chẵn thì am3 + bm2 + cm + d lẻ
Vì d lẻ nên P(m) ≠ 0
• Nếu m lẻ thì am3 + bm2 + cm chẵn (vì a, b, c có thể nhận giá trị lẻ, lẻ, chẵn hoặc chẵn, chẵn, chẵn)
Vì d lẻ nên P(m) = am3 + bm2 + cm + d lẻ
Suy ra P(m) ≠ 0
Do đó x = m không phải là nghiệm của P(x)
Vậy P(x) không thể có nghiệm là số nguyên.