Cho cot x = - 3, pi/2 < x < pi. Tính sin x, cos x, tan x

Cho cot x = – 3, \(\frac{\pi }{2} < x < \pi \). Tính sin x, cos x, tan x.

Trả lời

Ta có: \(\tan x = \frac{1}{{\cot x}} = \frac{1}{{ - 3}} = - \frac{1}{3}\).

Áp dụng công thức \(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}}\), ta được \({\sin ^2}x = \frac{1}{{1 + {{\cot }^2}x}} = \frac{1}{{1 + {{\left( { - 3} \right)}^2}}} = \frac{1}{{10}}\).

\(\frac{\pi }{2} < x < \pi \) nên sin x > 0. Suy ra \(\sin x = \frac{{\sqrt {10} }}{{10}}\).

Khi đó từ \(\cot x = \frac{{\cos x}}{{\sin x}}\), suy ra cos x = cot x . sin x = \( - 3.\frac{{\sqrt {10} }}{{10}} = - \frac{{3\sqrt {10} }}{{10}}\).

Câu hỏi cùng chủ đề

Xem tất cả