Cho các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức
13
04/09/2024
Cho các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: \(P = \frac{a}{{\sqrt {a + bc} }} + \frac{b}{{\sqrt {b + ca} }} + \frac{c}{{\sqrt {c + ab} }}\).
Trả lời
Ta có a + b + c = 1 nên suy ra:
\[\frac{a}{{\sqrt {a + bc} }} = \frac{a}{{\sqrt {a\left( {a + b + c} \right) + bc} }} = \frac{a}{{\sqrt {{a^2} + ab + ac + bc} }}\]
\[ = \frac{a}{{\sqrt {a\left( {a + b} \right) + c\left( {a + b} \right)} }} = \frac{a}{{\sqrt {\left( {a + b} \right)\left( {a + c} \right)} }} = \sqrt {\frac{a}{{a + b}}} \,.\,\sqrt {\frac{a}{{a + c}}} \]
\( \le \frac{1}{2}\left( {\frac{a}{{a + b}} + \frac{a}{{a + c}}} \right)\)
Làm tương tự như vậy, ta lại có:
\(\frac{b}{{\sqrt {b + ca} }} \le \frac{1}{2}\left( {\frac{b}{{b + c}} + \frac{b}{{b + a}}} \right);\;\frac{c}{{\sqrt {c + ab} }} \le \frac{1}{2}\left( {\frac{c}{{c + a}} + \frac{c}{{c + b}}} \right)\)
Do đó: \(P = \frac{a}{{\sqrt {a + bc} }} + \frac{b}{{\sqrt {b + ca} }} + \frac{c}{{\sqrt {c + ab} }}\)
\( \le \frac{1}{2}\left( {\frac{a}{{a + b}} + \frac{a}{{a + c}}} \right) + \frac{1}{2}\left( {\frac{b}{{b + c}} + \frac{b}{{b + a}}} \right) + \frac{1}{2}\left( {\frac{c}{{c + a}} + \frac{c}{{c + b}}} \right)\)
\[ = \frac{1}{2}\left( {\frac{a}{{a + b}} + \frac{a}{{a + c}} + \frac{b}{{b + c}} + \frac{b}{{b + a}} + \frac{c}{{c + a}} + \frac{c}{{c + b}}} \right)\]
\[ = \frac{1}{2}\left( {\frac{{a + b}}{{a + b}} + \frac{{a + c}}{{a + c}} + \frac{{b + c}}{{b + c}}} \right)\]
\[ = \frac{1}{2}\left( {1 + 1 + 1} \right) = \frac{3}{2}\]
Dấu “=” xảy ra khi và chỉ khi \(a = b = c = \frac{1}{3}\).
Vậy GTLN của P là \(\frac{3}{2}\) khi \(a = b = c = \frac{1}{3}\).