Cho biểu thức: P = ( - 2/3x^2y^3z^2)( -1/2xy)^3( xy^2z)^2. a) Rút gọn biểu thức P. b) Tìm bậc và hệ số biểu thức B. c) Tìm giá trị các biến để P £ 0.

Cho biểu thức: \(P = \left( { - \frac{2}{3}{x^2}{y^3}{z^2}} \right){\left( { - \frac{1}{2}xy} \right)^3}{\left( {x{y^2}z} \right)^2}\).

a) Rút gọn biểu thức P.

b) Tìm bậc và hệ số biểu thức B.

c) Tìm giá trị các biến để P £ 0.

Trả lời

Lời giải

a) Ta có \(P = \left( { - \frac{2}{3}{x^2}{y^3}{z^2}} \right){\left( { - \frac{1}{2}xy} \right)^3}{\left( {x{y^2}z} \right)^2}\)

\( = - \frac{2}{3}{x^2}{y^3}{z^2}\,.\, - \frac{1}{8}{x^3}{y^3}{x^2}{y^4}{z^2}\)

\[ = \left[ {\left( { - \frac{2}{3}} \right)\,.\,\left( { - \frac{1}{8}} \right)} \right]\left( {{x^2}\,.\,{x^3}\,.\,{x^2}} \right)\left( {{y^3}\,.\,{y^3}\,.\,{y^4}} \right)\left( {{z^2}\,.\,{z^2}} \right)\]

\[ = \frac{1}{{12}}{x^7}{y^{10}}{z^4}\].

b) Hệ số của biểu thức B là \(\frac{1}{{12}}\) và B có bậc là 21.

c) Để P £ 0 thì \[\frac{1}{{12}}{x^7}{y^{10}}{z^4} \le 0 \Rightarrow {x^7} \le 0 \Rightarrow x \le 0\] (do y10, z4 ³ 0; "y, z Î ℝ)

Vậy x £ 0; y, z Î ℝ.

Câu hỏi cùng chủ đề

Xem tất cả