Câu hỏi:

03/04/2024 27

Cho A là tập tất cả các số tự nhiên có 5 chữ số. Chọn ngẫu nhiên một số từ tập A, tính xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị là chữ số 1.

A. 64345000

Đáp án chính xác

B. 128590000

C. 1077500

D. 14310000

Trả lời:

verified Giải bởi Vietjack

Chọn A

Ta có tất cả các số tự nhiên có 5 chữ số bắt đầu từ 10000 đến 99999 gồm 90000 số.

Do đó n(Ω) = 90000

Mặt khác, ta thấy cứ 70 số tự nhiên liên tiếp thì có 10 số chia hết cho 7, trong đó có 1 số có chữ số hàng đơn vị là chữ số 1.

Mà 90000 = 70x1285+50, nên ta chia 90000 số thành 1285 bộ 70 số liên tiếp và còn lại 50 số cuối, trong đó:

1285 bộ 70 số tự nhiên liên tiếp có 1285 số thỏa mãn yêu cầu

50 số cuối có 5 số tận cùng bằng 1 được xét trong bảng sau

99951

99961

99971

99981

99991

Chia cho 7 dư 5

Chia cho 7 dư 1

Chia cho 7 dư 4

Chia hết cho 7

Chia cho 7 dư 3

 

 

 

 

 

Vậy tất cả có 1286 số chia hết cho 7 và chữ số hàng đơn vị là chữ số 1.

Gọi  là biến cố ‘Chọn được một số chia hết cho 7 và chữ số hàng đơn vị là chữ số 1’ thì n(A) = 1286 

Suy ra  

Cách 2: 

Vì A là tập tất cả các số tự nhiên có 5 chữ số nên 

Số phần tử của không gian mẫu là 

Gọi X là biến cố: “Chọn được một số chia hết cho 7 và chữ số hàng đơn vị bằng 1 từ tập A”.

Khi  có tận cùng bằng 1, do đó  với có chữ số tận cùng là 3.

Xét các trường hợp sau:

1) M là số có 4 chữ số có dạng mnpq¯  Khi đó: 

- Với m = 1, do 

+) Khi n = 4 thì p > 2 nên . Ta được 7 số thỏa mãn.

+) Khi n5 : Có 5 cách chọn n thuộc tập hợp {5;6;7;8;9}. Khi đó p được chọn tùy ý thuộc tập {0;1;2;3;4;5;6;7;8;9}. Ta được 50 số thỏa mãn.

- Với m2 tức là có 8 cách chọn m từ tập {2;3;4;5;6;7;8;9}. Khi đó  với mọi n,p thuộc tập hợp {0;1;2;3;4;5;6;7;8;9}. Ta được 8.10.10 = 800 số thỏa mãn.

2) M là số có 5 chữ số có dạng mnpqr¯  Khi đó:

Do mnpqr¯  14285 nên m chỉ nhận giá trị bằng 1 và n  4

- Với m = 1; n = 0,1,2,3 thì p,q là các số tùy ý thuộc tập {0;1;2;3;4;5;6;7;8;9}. Ta được 4.10.10 = 400 số thỏa mãn.

- Với m = 1; n = 4:

+) Khi p = 0 hoặc p = 1 thì q là số tùy ý thuộc tập {0;1;2;3;4;5;6;7;8;9}. Ta được 2.10 = 20 số thỏa mãn.

+) Khi p = 2 thì q phải thuộc tập {0;1;2;3;4;5;6;7;8}. Ta được 9 số thỏa mãn.

Vậy số phần tử của biến cố X là n(X) = 7 + 50 + 8000 + 429 = 1286

Xác suất để chọn được một số chia hết cho 7 và chữ số hàng đơn vị là 1 bằng

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong chương trình giao lưu gồm có 15 người ngồi vào 15 ghế theo một hàng ngang. Giả sử người dẫn chương trình chọn ngẫu nhiên 3 người trong 15 người để giao lưu với khán giả. Xác suất để trong 3 người được chọn đó không có 2 người ngồi kề nhau là

Xem đáp án » 03/04/2024 97

Câu 2:

Lập một số tự nhiên có 4 chữ số. Tính xác suất để số đó có chữ số đứng trước không nhỏ hơn chữ số đứng sau.

Xem đáp án » 03/04/2024 93

Câu 3:

Cho S là tập tất cả các số tự nhiên có 7 chữ số, lấy ngẫu nhiên một số từ tập S. Xác suất để số lấy được có chữ số tận cùng bằng 3 và chia hết cho 7 có kết quả gần nhất với số nào trong các số sau

Xem đáp án » 03/04/2024 78

Câu 4:

Trong kỳ thi Chọn học sinh giỏi tỉnh có  em dự thi, có 105 em tham gia buổi gặp mặt trước kỳ thi. Biết các em đó có số thứ tự trong danh sách lập thành một cấp số cộng. Các em ngồi ngẫu nhiên vào hai dãy bàn đối diện nhau, mỗi dãy có 5 ghế và mỗi ghế chỉ ngồi được 1 học sinh. Tính xác suất để tổng các số thứ tự của hai em ngồi đối diện nhau là bằng nhau.

Xem đáp án » 03/04/2024 76

Câu 5:

Cho S là tập tất cả các số tự nhiên có 7 chữ số, lấy ngẫu nhiên một số từ tập S. Xác suất để số lấy được có chữ số tận cùng bằng 3 và chia hết cho 7 có kết quả gần nhất với số nào trong các số sau

Xem đáp án » 03/04/2024 67

Câu 6:

Cho tập S = {1;2;3;...;19;20} gồm 20 số tự nhiên từ 1 đến 20. Lấy ngẫu nhiên ba số thuộc S. Xác suất để ba số lấy được lập thành một cấp số cộng là

Xem đáp án » 03/04/2024 64

Câu 7:

Xếp ngẫu nhiên 2 quả cầu xanh, 2 quả cầu đỏ, 2 quả cầu trắng (các quả cầu này đôi một khác nhau) thành một hàng ngang. Tính xác suất để 2 quả cầu màu trắng không xếp cạnh nhau?

Xem đáp án » 03/04/2024 60

Câu 8:

Cho một bảng ô vuông 3x3

Điền ngẫu nhiên các số 1, 2, 3, 4, 5, 6, 7, 8, 9 vào bảng trên (mỗi ô chỉ điền một số). Gọi A là biến cố “mỗi hàng, mỗi cột bất kì đều có ít nhất một số lẻ”. Xác suất của A bằng:

Xem đáp án » 03/04/2024 57

Câu 9:

Tung đồng thời 2 con súc sắc cân đối đồng chất. Gọi m là tích của số chấm trên hai con súc sắc trong mỗi lần tung. Tính xác suất để phương trình 12x2 +6x +m = 0  có hai nghiệm phân biệt.

Xem đáp án » 03/04/2024 55

Câu 10:

Gọi X là tập hợp các số tự nhiên có 6 chữ số đôi một khác nhau. Lấy ngẫu nhiên một số thuộc tập X. Xác suất để số lấy được luôn chứa đúng ba số thuộc tập Y = {1;2;3;4;5} và 3 số đứng cạnh nhau, số chẵn đứng giữa hai số lẻ. 

Xem đáp án » 03/04/2024 51

Câu 11:

Cho tập hợp (S). Hai bạn A, B mỗi bạn chọn ngẫu nhiên một tập con của (S). Xác suất để tập con của A và B chọn được có đúng 2 phần tử chung gần nhất với kết quả nào dưới đây?

Xem đáp án » 03/04/2024 48

Câu 12:

Cho tập X = {1;2;3;....;8}. Lập từ X số tự nhiên có 8 chữ số đôi một khác nhau. Xác suất để lập được số chia hết cho 1111 là

Xem đáp án » 03/04/2024 46

Câu 13:

Có 3 quả cầu màu vàng, 3 quả cầu màu xanh (các quả cầu cùng màu thì giống nhau) bỏ vào hai cái hộp khác nhau, mỗi hộp  quả cầu. Tính xác suất để các quả cầu cùng màu thì vào chung một hộp. 

Xem đáp án » 03/04/2024 43

Câu 14:

Cho đa giác 30 đỉnh nội tiếp đường tròn, gọi (S) là tập hợp các đường thẳng đi qua hai trong số 30 đỉnh đã cho. Chọn 2 đường thẳng bất kỳ thuộc tập (S). Tính xác suất để chọn được 2 đường thẳng mà giao điểm của chúng nằm bên trong đường tròn.

Xem đáp án » 03/04/2024 43

Câu 15:

Cho một đa giác đều 48 đỉnh. Lấy ngẫu nhiên 3 đỉnh của đa giác. Tính xác suất để tam giác tạo thành từ ba đỉnh đó là một tam giác nhọn.

Xem đáp án » 03/04/2024 43