Cho a, b là hai số thực dương tùy ý và b khác 1. Tìm kết luận đúng. A. ln a + ln b = ln(a + b)

Cho a, b là hai số thực dương tùy ý và b ≠ 1. Tìm kết luận đúng.

A. ln a + ln b = ln(a + b)

B. ln(a + b) = ln a . ln b

C. ln a – ln b = ln(a – b)

D. \({\log _b}a = \frac{{\ln a}}{{\ln b}}\).

Trả lời

Đáp án đúng là: D

Ta có:

ln a + ln b = ln (ab) ≠ ln(a + b) nên A sai

ln(a + b) ≠ ln a . ln b nên B sai

\(\ln a - \ln b = \ln \frac{a}{b} \ne \ln \left( {a - b} \right)\) nên C sai

\({\log _b}a = \frac{{\ln a}}{{\ln b}}\) nên D đúng

Vậy ta chọn đáp án D.

Câu hỏi cùng chủ đề

Xem tất cả