Cho a; b; c đôi một khác nhau. Tính giá trị biểu thức: P = a^2/( a - b)( a - c) + b^2/( b - c)( b - a) + c^2/( c - b)( c - a)

Cho a; b; c đôi một khác nhau. Tính giá trị biểu thức:

\(P = \frac{{{a^2}}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \frac{{{b^2}}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \frac{{{c^2}}}{{\left( {c - b} \right)\left( {c - a} \right)}}\).

Trả lời

Lời giải

\(P = \frac{{{a^2}}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \frac{{{b^2}}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \frac{{{c^2}}}{{\left( {c - b} \right)\left( {c - a} \right)}}\)

\( = \frac{{{a^2}\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {b - c} \right)}} - \frac{{{b^2}\left( {a - c} \right)}}{{\left( {b - c} \right)\left( {a - b} \right)\left( {a - c} \right)}} + \frac{{{c^2}\left( {a - b} \right)}}{{\left( {b - c} \right)\left( {a - c} \right)\left( {a - b} \right)}}\)

\( = \frac{{{a^2}\left( {b - c} \right) - {b^2}\left( {a - c} \right) + {c^2}\left( {a - b} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {b - c} \right)}}\)

\( = \frac{{{a^2}b - {a^2}c - a{b^2} + {b^2}c + a{c^2} - b{c^2}}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {b - c} \right)}}\)

\( = \frac{{{a^2}\left( {b - c} \right) - a\left( {{b^2} - {c^2}} \right) + bc\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {b - c} \right)}}\)

\( = \frac{{{a^2}\left( {b - c} \right) - a\left( {b - c} \right)\left( {b + c} \right) + bc\left( {b - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {b - c} \right)}}\)

\[ = \frac{{\left( {b - c} \right)\left[ {{a^2} - a\left( {b + c} \right) + bc} \right]}}{{\left( {a - b} \right)\left( {a - c} \right)\left( {b - c} \right)}}\]

\[ = \frac{{{a^2} - ab - ac + bc}}{{\left( {a - b} \right)\left( {a - c} \right)}}\]

\[ = \frac{{a\left( {a - b} \right) - c\left( {a - b} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}}\]

\[ = \frac{{\left( {a - b} \right)\left( {a - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}} = 1\]

Câu hỏi cùng chủ đề

Xem tất cả