Cho a + b + c = 1, a^2 + b^2 + c^2 = 1, a^3 + b^3 + c^3 = 1. Tính M = abc.

Cho a + b + c = 1, a2 + b2 + c2 = 1, a3 + b3 + c3 = 1. Tính M = abc.

Trả lời

Lời giải

Ta có: a2 + b2 + c2 = 1 Þ a2, b2, c2 £ 1 Þ a, b, c £ 1.

Lại có: a2 + b2 + c2 = a3 + b3 + c3

Û a3 − a2 + b3 − b2 + c3 − c2 = 0

Û a2(a − 1) + b2(b − 1) + c2(c − 1) = 0

Mà do \(\left\{ \begin{array}{l}{a^2},\;{b^2},\;{c^2} \ge 0\\a,\;b,\;c \le 1\end{array} \right. \Rightarrow {a^2}\left( {a - 1} \right) + {b^2}\left( {b - 1} \right) + {c^2}\left( {c - 1} \right) \le 0\)

Suy ra phải có: a2(a − 1) = b2(b − 1) = c2(c − 1) = 0.

Kết hợp giả thiết a + b + c = 1, suy ra 3 số a, b, c phải có 1 số bằng 1 và 2 số còn lại bằng 0.

Khi đó M = abc = 0.

Câu hỏi cùng chủ đề

Xem tất cả