Cho a, b, c > 0 thỏa mãn: a + b + c = 1. Chứng minh rằng: căn bậc hai của 5a + 1 + căn bậc hai của 5b + 1 + căn bậc hai của 5c + 1 nhỏ hơn bằng 2 căn bậc hai của 6
21
13/08/2024
Cho a, b, c > 0 thỏa mãn: a + b + c = 1. Chứng minh rằng:
\(\sqrt {5a + 1} + \sqrt {5b + 1} + \sqrt {5c + 1} \le 2\sqrt 6 \).
Trả lời
Lời giải
Áp dụng BĐT Bunhiacopxki, ta có:
\({\left( {\sqrt {5a + 1} + \sqrt {5b + 1} + \sqrt {5c + 1} } \right)^2} \le \left( {5a + 1 + 5b + 1 + 5c + 1} \right)\left( {{1^2} + {1^2} + {1^2}} \right)\)
\( \Leftrightarrow {\left( {\sqrt {5a + 1} + \sqrt {5b + 1} + \sqrt {5c + 1} } \right)^2} \le 8\,.\,3 = 24\)
\( \Leftrightarrow \sqrt {5a + 1} + \sqrt {5b + 1} + \sqrt {5c + 1} \le \sqrt {24} = 2\sqrt 6 \)
Dấu “=” xảy ra khi \(a = b = c = \frac{1}{3}\).
Vậy \(\sqrt {5a + 1} + \sqrt {5b + 1} + \sqrt {5c + 1} \le 2\sqrt 6 \) (đpcm).