Câu hỏi:
03/04/2024 38
Cho 5 điểm A, B, C, D, E trong đó không có 4 điểm nào đồng phẳng. Hỏi có bao nhiêu mặt phẳng tạo bởi 3 trong 5 điểm đã cho?
A. 10
B. 12
C. 8
D. 14
Trả lời:
Đáp án A
Phương pháp:
Qua 3 điểm phân biệt không thẳng hàng xác định một mặt phẳng.
Cách giải:
Qua 3 điểm phân biệt không thẳng hàng xác định một mặt phẳng. Do đó số mặt phẳng tạo bởi 3 trong 5 điểm đã cho là: \[C_5^3 = 10\].
Đáp án A
Phương pháp:
Qua 3 điểm phân biệt không thẳng hàng xác định một mặt phẳng.
Cách giải:
Qua 3 điểm phân biệt không thẳng hàng xác định một mặt phẳng. Do đó số mặt phẳng tạo bởi 3 trong 5 điểm đã cho là: \[C_5^3 = 10\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Chọn ngẫu nhiên một số nguyên dương nhỏ hơn 9, xác suất để số được chọn là số nguyên tố bằng:
Câu 2:
Số các số tự nhiên có 5 chữ số khác nhau lập được từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8 là:
Câu 3:
b) Nếu các câu hỏi trong đề thi được chọn ngẫu nhiên. Tính xác suất để trong đề thi có đủ ba loại câu hỏi sao cho số câu dễ và câu trung bình bằng nhau.
b) Nếu các câu hỏi trong đề thi được chọn ngẫu nhiên. Tính xác suất để trong đề thi có đủ ba loại câu hỏi sao cho số câu dễ và câu trung bình bằng nhau.
Câu 4:
Hệ số của \[{x^3}\] trong khai triển nhị thức Niu – Tơn của \[{\left( {2 + x} \right)^{10}}\] là:
Câu 6:
Trong ngân hàng đề có 6 câu hỏi dễ, 5 câu hỏi trung bình và 3 câu hỏi khó. Một đề thi gồm có 6 câu hỏi được chọn từ các câu trong ngân hàng đề đã cho.
a) Hỏi có tất cả bao nhiêu đề thi khác nhau nếu trong đề có 3 câu dễ, 2 câu trung bình và 1 câu khó.
Trong ngân hàng đề có 6 câu hỏi dễ, 5 câu hỏi trung bình và 3 câu hỏi khó. Một đề thi gồm có 6 câu hỏi được chọn từ các câu trong ngân hàng đề đã cho.
a) Hỏi có tất cả bao nhiêu đề thi khác nhau nếu trong đề có 3 câu dễ, 2 câu trung bình và 1 câu khó.
Câu 7:
Trong mặt phẳng tọa độ Oxy, cho đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 4\], phép vị tự tâm O tỷ số \[k = 2\] biến đường tròn \[\left( C \right)\] thành đường tròn có phương trình là:
Câu 8:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M là trung điểm SA, điểm N thuộc đoạn SD sao cho \[NS = 2ND,I\] là giao điểm của MN và AD.
a) Xác định giao tuyến của mặt phẳng \[\left( {BMN} \right)\] với mặt phẳng \[\left( {ABCD} \right)\].
b) Gọi J là giao điểm của CD với BI. Xác định giao tuyến của mặt phẳng \[\left( {BMN} \right)\] với mặt phẳng \[\left( {SCD} \right)\], từ đó suy ra thiết diện của hình chóp với mặt phẳng \[\left( {BMN} \right)\].
c) Gọi K là giao điểm của BI với AC. Chứng minh \[BM\parallel KN\].
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, M là trung điểm SA, điểm N thuộc đoạn SD sao cho \[NS = 2ND,I\] là giao điểm của MN và AD.
a) Xác định giao tuyến của mặt phẳng \[\left( {BMN} \right)\] với mặt phẳng \[\left( {ABCD} \right)\].
b) Gọi J là giao điểm của CD với BI. Xác định giao tuyến của mặt phẳng \[\left( {BMN} \right)\] với mặt phẳng \[\left( {SCD} \right)\], từ đó suy ra thiết diện của hình chóp với mặt phẳng \[\left( {BMN} \right)\].
c) Gọi K là giao điểm của BI với AC. Chứng minh \[BM\parallel KN\].