Cho 3 sin^4 x - cos^4 x = 1/2. Tính A = 2sin^4x - cos^4x

Cho 3sin4x – cos4x = \(\frac{1}{2}.\) Tính A = 2sin4x – cos4x.

Trả lời

Ta có: sin2x + cos2x = 1

cos2x = 1 – sin2x

Mà 3sin4x – cos4x = \(\frac{1}{2}.\)

3sin4x – (1 – sin2x)2 = \(\frac{1}{2}.\)

3sin4x – 1 + 2sin2x – sin4x – \(\frac{1}{2}\)= 0

2sin4x + 2sin2x – \(\frac{3}{2}\) = 0

\(\left[ \begin{array}{l}{\sin ^2}x = \frac{1}{2}\\{\sin ^2}x = \frac{{ - 3}}{2}\left( L \right)\end{array} \right.\)

sin2x = \(\frac{1}{2}\)

cos2x = \(\frac{1}{2}\)

A = 2sin4x – cos4x = \(2.{\left( {\frac{1}{2}} \right)^2} - {\left( {\frac{1}{2}} \right)^2} = \frac{1}{4}\).

Câu hỏi cùng chủ đề

Xem tất cả