Cho 2 tam giác ABC và A'B'C' lần lượt có các trọng tâm là G và G'. Chứng minh vecto AA'+BB'+CC'=3GG'

Cho 2 tam giác ABC và A'B'C' lần lượt có các trọng tâm là G và G'. Chứng minh AA'+BB'+CC'=3GG'

Từ đó suy ra điều kiện cần và đủ để 2 tam giác có cùng trọng tâm

Trả lời

AA'+BB'+CC'=3GG'

⇔ GA'GA+GB'GB+GC'GC=3GG'

⇔ GA'+GB'+GC'GA+GB+GC=3GG'

⇔ GG'+G'A'+GG'+G'B'+GG'+G'C'=3GG'

⇔ 3GG'+G'A'+G'B'+G'C'=3GG'

⇔ 3GG'=3GG' (đpcm)

Vậy điều kiện cần và đủ để 2 tam giác có cùng trọng tâm là AA'+BB'+CC'=3GG' .

Câu hỏi cùng chủ đề

Xem tất cả