Cho 2 số thực x, y thỏa mãn log2 (x^2 + y^2) / (3xy + x^2) + x^2 + 2y^2 + 1
16
06/09/2024
Cho 2 số thực x, y thỏa mãn \({\log _2}\frac{{{x^2} + {y^2}}}{{3xy + {x^2}}} + {x^2} + 2{y^2} + 1 \le 3xy\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{{2{x^2} - xy + 2{y^2}}}{{2xy - {y^2}}}\).
Trả lời
Đáp án đúng là: B
Biến đổi giả thiết ta có:
\({\log _2}\frac{{{x^2} + {y^2}}}{{3xy + {x^2}}} + 1 + 2{x^2} + 2{y^2} \le 3xy + {x^2}\)
\( \Leftrightarrow {\log _2}\frac{{2{x^2} + 2{y^2}}}{{3xy + {x^2}}} + 2{x^2} + 2{y^2} \le 3xy + {x^2} - 1\)
\( \Leftrightarrow {\log _2}\left( {2{x^2} + 2{y^2}} \right) + 2{x^2} + 2{y^2} \le {\log _2}\left( {3xy + {x^2}} \right) + 3xy + {x^2}\)
⇔ 2x2 + 2y2 ≤ 3xy + x2
⇔ x2 – 3xy + 2y2 ≤ 0
\( \Leftrightarrow 1 \le \frac{x}{y} \le 2\)
Khi đó \(P = \frac{{2\frac{x}{y} - \frac{x}{y} + 2}}{{\frac{{2x}}{y} - 1}} = f\left( {\frac{x}{y}} \right) \ge f\left( {\frac{3}{2}} \right) = \frac{5}{2}\).