Gọi E là tập nghiệm của phương trình x^2 – 2x – 3 = 0, G là tập nghiệm của phương trình (x + 1)(2x – 3) = 0. Tìm P = E ∩ G

Bài 8 trang 19 Toán lớp 10 Tập 1Gọi E là tập nghiệm của phương trình x2 – 2x – 3 = 0, G là tập nghiệm của phương trình (x + 1)(2x – 3) = 0.

Tìm P = E ∩ G.

 

Trả lời

+ Xét phương trình x2 – 2x – 3 = 0

 x2 + x – 3x – 3 = 0

 x(x + 1) – 3(x +1) = 0

 (x + 1)(x – 3) = 0

x+1=0x3=0x=1x=3.

Suy ra phương trình trên có hai nghiệm là 3 và – 1.

Do đó E = {– 1; 3}.

+ Ta có: (x + 1)(2x – 3) = 0

x+1=02x3=0x=1x=32

Do đó G = 1;32

Ta có P = E ∩ G hay P là giao của hai tập hợp E và G, gồm các phần tử vừa thuộc E vừa thuộc G.

Vậy P = E ∩ G = {– 1; 3}1;32 = {– 1}.  

Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh Diều hay, chi tiết khác:

Bài 1: Mệnh đề toán học

Bài 2: Tập hợp. Các phép toán trên tập hợp

Bài tập cuối chương 1

Bài 1: Bất phương trình bậc nhất hai ẩn

Bài 2: Hệ bất phương trình bậc nhất hai ẩn

Bài tập cuối chương 2

Câu hỏi cùng chủ đề

Xem tất cả