b) Từ M kẻ cát tuyến MCD với đường tròn (C nằm giữa M và D), tia MD nằm giữa hai tia MA và MO. Tia MO cắt AB tại H. Chứng minh MC.MD = MH.MO.
25
11/07/2024
b) Từ M kẻ cát tuyến MCD với đường tròn (C nằm giữa M và D), tia MD nằm giữa hai tia MA và MO. Tia MO cắt AB tại H. Chứng minh MC.MD = MH.MO.
Trả lời
b) Xét ∆MAC và ∆MDA, có:
chung;
(góc tạo bởi tia tiếp tuyến AM và dây cung AC và góc nội tiếp chắn cung AC).
Do đó (g.g).
Suy ra .
Vì vậy MA2 = MC.MD (3)
Ta có OA = OB = R.
Suy ra O nằm trên đường trung trực của đoạn AB (*)
Lại có MA = MB (tính chất hai tiếp tuyến cắt nhau).
Suy ra M nằm trên đường trung trực của đoạn AB (**)
Từ (*), (**), suy ra OM là đường trung trực của đoạn AB.
Mà OM cắt AB tại H.
Do đó OM ⊥ AB tại H.
∆OAM vuông tại A có AH là đường cao: MA2 = MH.MO (4)
Từ (3), (4), suy ra MC.MD = MH.MO.