a) Cho A = 4 + 2^2 + 2^3 + … +2^2005. Chứng tỏ rằng A là một lũy thừa cơ số 2

Bài 49 trang 18 sách bài tập Toán lớp 6 Tập 1:

a) Cho A = 4 + 22 + 23 + … +22005. Chứng tỏ rằng A là một lũy thừa cơ số 2.

b) Cho B = 5 + 52 + 53 + … + 52021. Chứng tỏ B + 8 không thể là bình phương của một số tự nhiên.

Trả lời

a) Ta có:

A = 22 + 23 + … +22005

A – 4 = 22 + 23 + … +22005

2(A – 4) = 23 + 24 + … + 22006

2(A – 4) – (A – 4) = (23 + 24 + … + 22006) – (22 + 23 + … +22005) = 22006 – 22

A – 4 = 22006 – 4

A = 22006.

Vậy A là một lũy thừa bậc 2006 cơ số 2.

b) B = 5 + 52 + 53 + … + 52021

Ta thấy các lũy thừa cơ số 5 là một số có chữ số tận cùng là 5 mà B có 2021 số hang là lũy thừa của cơ số 5 nên chữ số tận cùng của B là 5. Suy ra B + 8 có kết quả là một số có chữ số tận cùng là 3 nên B + 8 không thể là bình phương của một số tự nhiên (vì không có bình phương số tự nhiên nào có chữ số tận cùng là 3).

Xem thêm các bài giải SBT Toán lớp 6 Cánh diều hay, chi tiết khác:

Bài 3: Phép cộng, phép trừ các số tự nhiên

Bài 4: Phép nhân, phép chia số tự nhiên

Bài 5: Phép tính lũy thừa với số mũ tự nhiên

Bài 6: Thứ tự thực hiện các phép tính

Bài 7: Quan hệ chia hết. Tính chất chia hết

Bài 8: Dấu hiệu chia hết cho 2, cho 5.

 

Câu hỏi cùng chủ đề

Xem tất cả