70 Bài tập về đường thẳng và mặt phẳng song song (có đáp án năm 2024) - Toán 11

1900.edu.vn xin giới thiệu: Tổng hợp các dạng bài tập đường thẳng và mặt phẳng song song Toán 11. Đây sẽ là tài liệu tham khảo hữu ích, giúp các bạn học sinh ôn tập và củng cố kiến thức đã học, tự luyện tập nhằm học tốt môn Toán 11, giải bài tập Toán 11 tốt hơn. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây.

Đường thẳng và mặt phẳng song song

Kiến thức cần nhớ

1. Vị trí tương đối của đường thẳng và mặt phẳng

Cho đường thẳng a và mặt phẳng (P). Căn cứ vào số điểm chung của đường thẳng và mặt phẳng ta có ba trường hợp sau:

a. Đường thẳng a và mặt phẳng (P) không có điểm chung, tức là: a(P)=ϕa//(P)

Tài liệu VietJack

b. Đường thẳng a và mặt phẳng (P) chỉ có một điểm chung, tức là: a(P)=A a cắt (P) tại A

Tài liệu VietJack

c. Đường thẳng a và mặt phẳng (P) có hai điểm chung, tức là:

a(P)=A,Ba(P) (Đường thẳng a nằm trong mặt phẳng (P))

Tài liệu VietJack

2. Điều kiện để một đường thẳng song song với một mặt phẳng

Nhận xét: Cho đường thẳng b nằm trong mặt phẳng (P) và một đường thẳng a song song với b. Lấy một điểm I tùy ý trên a. Khi đó:

- Nếu I thuộc (P) thì a nằm trong (P)

- Nếu I không thuộc (P) thì a song song với (P)

Tài liệu VietJack

Định lí 1: Nếu đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng nào đó trong (P) thì a song song với (P).

3. Tính chất

Định lí 2: Nếu đường thẳng a song song với mặt phẳng (P) thì mọi mặt phẳng (Q) chứa a mà cắt (P) thì cắt theo giao tuyến song song với a.

Tài liệu VietJack

Hệ quả 1: Nếu một đường thẳng song song với một mặt phẳng thì nó song song với một đường thẳng nào đó trong mặt phẳng.

Hệ quả 2: Nếu hai mặt phẳng cắt nhau cùng song song với một đường thẳng thì giao tuyến của chúng song song với đường thẳng đó.

Tài liệu VietJack

Hệ quả 3: Nếu a và b là hai đường thẳng chéo nhau thì có duy nhất một mặt phẳng chứa a và song song với b.

Đường thẳng và mặt phẳng song song và cách giải bài tập – Toán lớp 11 (ảnh 1)

Các dạng toán đường thẳng và mặt phẳng song song

(Xem chi tiết trong file đính kèm)

Dạng 1: Chứng minh đường thẳng song song với mặt phẳng

Phương pháp giải: Để chứng minh đường thẳng d song song với mặt phẳng (α), ta chứng minh d không nằm trong (α) và song song với đường thẳng a chứa trong (α)

Tức: d(α)a(α)d//ad//(α)

Ví dụ minh họa

Ví dụ 1: Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABD. Trên BC lấy M sao cho MB = 2MC. Chứng minh MG // (ACD).

Đường thẳng và mặt phẳng song song và cách giải bài tập – Toán lớp 11 (ảnh 1)

Lời giải:

Gọi I là trung điểm AD.

Trong tam giác CBI có: BMBC=BGBI=23 (theo giả thuyết và tính chất trọng tâm)

Nên MG // CI (Định lý Ta – lét)

Mà CI nằm trong mặt phẳng (ACD)

Vậy MG // (ACD).

Ví dụ 2: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AC.

a. Chứng minh MN // (BCD).

b. Gọi d là giao tuyến của hai mặt phẳng (DMN) và (DBC). Xét vị trí tương đối của d và mặt phẳng (ABC).

Tài liệu VietJack

Lời giải:

a. Ta có: MN là đường trung bình của tam giác ABC

Suy ra: MN // BC

Mà BC nằm trong mặt phẳng (BCD)

Vậy: MN // (BCD).

b. Vì MN // (BCD)

Nên (DMN) đi qua MN cắt (BCD) theo giao tuyến d đi qua D và song song với MN.

Mà MN nằm trong (ABC)

Do đó: d // (ABC).

Dạng 2: Dựng thiết diện song song với một đường thẳng

Phương pháp giải: Cho đường thẳng d song song với mặt phẳng (α). Nếu mặt phẳng β chứa d và cắt (α) theo giao tuyến d’ thì d’ song song với d.

Nghĩa là: d//(α)(β)d(β)(α)=d'd//d'

Thiết diện cắt bởi một mặt phẳng chứa một đường thẳng song song với đường thẳng đã cho trước được xác định bằng cách phối hợp hai cách xác định giao tuyến đã biết.

Ví dụ minh họa

Ví dụ 3: Cho hình chóp S.ABCD có đáy là hình bình hành ABCD, O là giao điểm của AC và BD, M là trung điểm SA. Tìm thiết diện của mặt phẳng (α) với hình chóp S.ABCD nếu (α) qua M và song song với SC và AD.

Tài liệu VietJack

Lời giải:

Vì (α) // AD nên (α) cắt hai mặt phẳng (SAD) và (ABCD) theo hai giao tuyến song song với AD.

Tương tự (α) // SC nên (α) cắt hai mặt phẳng (SAC) và (SCD) theo hai giao tuyến song song với SC.

Có: OM // SC (đường trung bình tam giác SAC)

Qua O kẻ đường thẳng song song với AD, cắt AB và CD tại Q và P

Qua M kẻ đường thẳng song song với AD cắt SD tại N

Theo nhận xét trên ta có: MN // PQ // SC

Vậy thiết diện là hình thang MNPQ.

Ví dụ 4: Cho hình chóp S.ABCD có đáy là hình bình hành. Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng đi qua trung điểm M của cạnh AB, song song với BD và SA.

Tài liệu VietJack

Lời giải:

Qua M vẽ đường thẳng song song với BD cắt AD tại N và cắt AC tại I

Qua M, I, N vẽ các đường thẳng song song với SA lần lượt cắt SB, SC, SD tại R, Q, P.

Thiết diện là ngũ giác MNPQR

Bài tập

1. Bài tập vận dụng (có hướng dẫn)

(Xem trong file đính kèm)

2. Bài tập tự luyện

* Bài tập tự luận

Bài 1: Cho hình chóp S.ABCD có đáy ABCD là một tứ giác lồi. Gọi O là giao điểm hai đường chéo AC và BD. Xác định thiết diện của hình chóp cắt bởi mặt phẳng đi qua O, song song với AB và SC. Thiết diện đó là hình gì?

Bài 2: Cho tứ diện ABCD. Lấy M trên AB. Một mặt phẳng đi qua M, song song với AC và BD. Thiết diện của tứ diện cắt bởi mặt phẳng đó là hình gì?

Bài 3: Cho tứ diện ABCD. Gọi M, N lần lượt là trọng tâm các tam giác ABD và BCD. Chứng minh MN // (ACD) và MN // (ABC).

Bài 4: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi G là trọng tâm tam giác SAB và I là trung điểm AB. M trên AD sao cho AD = 3AM. Đường thẳng qua M song song với AB cắt CI tại N. Chứng minh NG // (SCD).

Bài 5: Cho tứ diện ABCD. Gọi E, F lần lượt là trọng tâm các tam giác ACD và BCD. Chứng minh EF song song với các mặt phẳng (ABC) và (ABD).

* Bài tập trắc nghiệm

Bài 1: Cho hai đường thẳng a, b chéo nhau. Hỏi có bao nhiêu mặt phẳng chứa a và song song với b?
A. 0

B. 1

C. 2

D. Vô số

Bài 2: Cho hai đường thẳng a và b cùng song song với mặt phẳng (P). Khẳng định nào không sai?

A. a // b

B. a và b chéo nhau

C. a và b cắt nhau

D. Chưa đủ điều kiện để kết luận vị trí tương đối của a và b

Bài 3: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I là trung điểm SC. Khẳng định nào sai?

A. IO // mp (SAB)

B. IO // mp (SAD)

C. mp (IBD) cắt hình chóp S.ABCD theo thiết diện là một tứ giác

D. (IBD)(SAC)=IO

Bài 4: Cho tứ diện ABCD. Gọi E, F là trọng tâm các tam giác BCD và ACD. Khẳng định nào sai?

A. EF // (ABD)

B. EF // (ABC)

C. BE, AF và CD đồng quy

D. EF=23AB

Bài 5: Cho hình chóp​​ S.ABCD​​ có đáy​​ ABCD​​ là hình bình hành. Mặt phẳng​​ (α)​​ qua​​ BD​​ và song song với​​ SA, mặt phẳng​​ (α)​​ cắt​​ SC tại​​ K.​​ Khẳng định nào sau đây là khẳng định đúng?​​ 

A. SK = 2KC

B. SK = KC

C. SK = 3KC

D. 2SK = KC

Xem thêm các dạng bài tập toán hay khác:

70 Bài tập về đường thẳng và mặt phẳng song song (có đáp án năm 2023)

300 Bài tập Toán hình 11 chương 2: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song (có đáp án năm 2023)

100 Bài tập về đường thẳng vuông góc với mặt phẳng (có đáp án năm 2023)

500 Bài tập Toán hình 11 chương 3: Vectơ trong không gian. Quan hệ vuông góc trong không gian (có đáp án năm 2023)

70 Bài tập về hai mặt phẳng song song (có đáp án năm 2023)

70 Bài tập về đường thẳng và mặt phẳng song song (có đáp án năm 2024) - Toán 11 (trang 1)
Trang 1
70 Bài tập về đường thẳng và mặt phẳng song song (có đáp án năm 2024) - Toán 11 (trang 2)
Trang 2
70 Bài tập về đường thẳng và mặt phẳng song song (có đáp án năm 2024) - Toán 11 (trang 3)
Trang 3
70 Bài tập về đường thẳng và mặt phẳng song song (có đáp án năm 2024) - Toán 11 (trang 4)
Trang 4
70 Bài tập về đường thẳng và mặt phẳng song song (có đáp án năm 2024) - Toán 11 (trang 5)
Trang 5
70 Bài tập về đường thẳng và mặt phẳng song song (có đáp án năm 2024) - Toán 11 (trang 6)
Trang 6
70 Bài tập về đường thẳng và mặt phẳng song song (có đáp án năm 2024) - Toán 11 (trang 7)
Trang 7
70 Bài tập về đường thẳng và mặt phẳng song song (có đáp án năm 2024) - Toán 11 (trang 8)
Trang 8
Để xem toàn bộ tài liệu, vui lòng tải xuống
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!