60 Bài tập về ứng dụng hình học của tích phân (có đáp án năm 2024) - Toán 12

1900.edu.vn xin giới thiệu: Tổng hợp các dạng bài tập về ứng dụng hình học của tích phân Toán 12. Đây sẽ là tài liệu tham khảo hữu ích, giúp các bạn học sinh ôn tập và củng cố kiến thức đã học, tự luyện tập nhằm học tốt môn Toán 12, giải bài tập Toán 12 tốt hơn. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây.

Ứng dụng hình học của tích phân

Kiến thức cần nhớ

Tính diện tích hình phẳng

1. Hình phẳng giới hạn bởi một đường cong và trục hoành

Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) liên tục trên đoạn [a; b], trục hoành và hai đường thẳng x = a; x = b được xác định: S=abf(x)dx

Lý thuyết Ứng dụng của tích phân trong hình học chi tiết – Toán lớp 12 (ảnh 1)

Ví dụ 1. Tính diện tích hình phẳng được giới hạn bởi y = 5x4 + 3x2, trục hoành và hai đường thẳng x = 0; x = 1.

Lời giải:

Diện tích hình phẳng cần tính là:

S=01  5x4+3x2dx=01  5x4+3x2dx=  x5+​ x301=2

2. Hình phẳng được giới hạn bởi 2 đường cong

Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x); y = g(x) liên tục trên đoạn [a; b] và hai đường thẳng x = a; x = b được xác định:

S=  abf(x)g(x)dx(*).

- Chú ý.

Khi áp dụng công thức (*), cần khử dấu giá trị tuyệt đối của hàm số dưới dấu tích phân. Muốn vậy ta giải phương trình: f(x) – g(x) = 0 trên đoạn [a; b].

Giả sử phương trình có hai nghiệm c; d (c < d). Khi đó, f(x) – g(x) không đổi dấu trên các đoạn [a; c]; [c; d]; [d; b]. Trên mỗi đoạn đó, chẳng hạn trên [a; c] ta có:

acf(x)g(x)dx=  acf(x)  g(x)dx

Ví dụ 2. Tính diện tích hình phẳng được giới hạn bởi các đường thẳng x = 0; x = 2 và các đồ thị của hai hàm số y = x – 1 và y = x2 – 1.

Lời giải:

Phương trình hoành độ giao điểm của hai đường cong:

Lý thuyết Ứng dụng của tích phân trong hình học chi tiết – Toán lớp 12 (ảnh 1)

Tính thể tích

1. Thể tích của vật thể

Cắt một vật thể (H) bởi hai mặt phẳng (P) và (Q) vuông góc với trục Ox lần lượt tại x = a; x = b (a < b). Một mặt phẳng tùy ý vuông góc với Ox tại điểm x (a  xb) cắt (H) theo thiết diện có diện tích là S(x). Giả sử S(x) liên tục trên đoạn [a; b].

Lý thuyết Ứng dụng của tích phân trong hình học chi tiết – Toán lớp 12 (ảnh 1)

Khi đó, thể tích V của phần vật thể giới hạn bởi hai mặt phẳng (P) và (Q) được xác định bởi công thức: V  =  abS(x)dx

2. Thể tích khối chóp và khối chóp cụt.

a) Cho khối chóp có diện tích đáy là B, chiều cao h.

Khi đó, thể tích của khối chóp là V=  13B.h

b) Cho khối chóp cụt tạo bởi khối chóp đỉnh S có diện tích hai đáy lần lượt là B; B’ và chiều cao là h.

Thể tích của khối chóp cụt là:

V=  h3  B  +  B.B'  +​ B'

Thể tích khối tròn xoay

 - Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường cong  y = f(x), trục hoành và hai đường thẳng x = a;  x = b quanh trục Ox:

V  =  πabf2(x)dx

Lý thuyết Ứng dụng của tích phân trong hình học chi tiết – Toán lớp 12 (ảnh 1)

Ví dụ 3. Cho hình phẳng giới hạn bởi đường cong , trục hoành và hai đường thẳng x = 0; x = 2. Tính thể tích khối tròn xoay thu được khi quay hình này quanh trục Ox.

Lời giải:

Thể tích khối tròn xoay cần tính là:

V=π02x4dx=πx5502=32π5

Các dạng bài tập về ứng dụng hình học của tích phân

(Xem chi tiết trong file đính kèm bên dưới)

Dạng 1: Tính diện tích giới hạn bởi một đồ thị.

Dạng 2: Tính diện tích giới hạn bởi hai đồ thị.

Dạng 3: Tính thể tích vật thể tròn xoay dựa vào định nghĩa.

Dạng 4: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi một đồ thị.

Dạng 5: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi hai đồ thị.

Dạng 6: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi nhiều đồ thị.

Dạng 7: Một số bài toán thực tế ứng dụng tích phân.

Dạng 8: Bài toán thực tế.

Dạng 9: Các bài toán bản chất đặt sắc của tích phân.

Bài tập vận dụng (có đáp án)

Câu 1: Gọi h(t) (cm) là mức nước ở bồn chứa sau khi bơm nước được t giây. Biết rằng

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

và lúc đầu bồn không có nước. Mức nước ở bồn sau khi bơm nước được 6 giây xấp xỉ bằng:

Lời giải:

Mức nước trong bồn tại giây thứ t bằng:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Khi đó h(6) ≈ 2,66 cm .

Câu 2: Vận tốc của một vật chuyển động là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Quãng đường vật di chuyển trong khoảng thời gian 1,5 giây xấp xỉ bằng:

Lời giải:

Quãng đường vật di chuyển sau thời gian 1,5 giây bằng

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 3: Thể tích phần vật thể giới hạn bởi hai mặt phẳng x = 0 và x = 3 biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x(0 ≤ x ≤ 3) là một hình chữ nhật có hai kích thước là x và 29-x2

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 4: Thể tích khối xoay khi quay quanh trục hoành một hình phẳng giới hạn bởi đồ thị hàm số y = x(x-4) và trục hoành là?

Lời giải:

Phương trình hoành độ giao điểm của đồ thị và trục hoành :

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 5: Thể tích khối tròn khi quay quanh trục hoành một hình phẳng giới hạn bởi đồ thị hàm số y = sinxcosx, y = 0, x = 0, x = π2 là:

Lời giải:

Thể tích khối tròn xoay là :

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 6: Thể tích khối tròn xoay khi quay quanh trục hoành một hình phẳng giới hạn bởi đồ thị hàm số y = lnx, y = 0, x = 2 là?

Lời giải:

Phương trình giao điểm của đồ thị hàm số và trục hoành :

ln x = 0 ⇔ x = 1

Thể tích khối tròn xoay cần tính là :

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 7: Thể tích khối tròn xoay khi quay quanh trục tung một hình phẳng giới hạn bởi hình tròn tâm I(2;0) bán kính R = 1 là:

Lời giải:

Phương trình đường tròn tâm I(2 ; 0), bán kính R = 1 là :

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Đường tròn cắt trục tung tại hai điểm (0; 1) và( 0; -1).

Vậy ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 8: Gọi h(t) (cm) là mức nước ở bồn chứa sau khi bơm nước được t giây. Biết rằng

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

và lúc đầu bồn không có nước. Mức nước ở bồn sau khi bơm nước được 6 giây xấp xỉ bằng:

Lời giải:

Mức nước trong bồn tại giây thứ t bằng:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Khi đó h(6) ≈ 2,66 cm .

Bài 9: Vận tốc của một vật chuyển động là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Quãng đường vật di chuyển trong khoảng thời gian 1,5 giây xấp xỉ bằng:

Lời giải:

Quãng đường vật di chuyển sau thời gian 1,5 giây bằng

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 10: Thể tích phần vật thể giới hạn bởi hai mặt phẳng x = 0 và x = 3 biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x(0 ≤ x ≤ 3) là một hình chữ nhật có hai kích thước là x và 29-x2

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập tự luyện (có đáp án)

(Xem trong file đính kèm bên dưới)

Xem thêm các dạng bài tập toán hay khác:

60 Bài tập về ứng dụng hình học của tích phân (có đáp án năm 2023)

60 Bài tập về Nguyên hàm ( có đáp án năm 2023 )

60 Bài tập về số phức (có đáp án năm 2023)

60 Bài tập về Bất phương trình mũ và bất phương trình logarit (2024) có đáp án

60 Bài tập về Hàm số mũ, Hàm số logarit (2024) có đáp án

60 Bài tập về ứng dụng hình học của tích phân (có đáp án năm 2024) - Toán 12 (trang 1)
Trang 1
60 Bài tập về ứng dụng hình học của tích phân (có đáp án năm 2024) - Toán 12 (trang 2)
Trang 2
60 Bài tập về ứng dụng hình học của tích phân (có đáp án năm 2024) - Toán 12 (trang 3)
Trang 3
60 Bài tập về ứng dụng hình học của tích phân (có đáp án năm 2024) - Toán 12 (trang 4)
Trang 4
60 Bài tập về ứng dụng hình học của tích phân (có đáp án năm 2024) - Toán 12 (trang 5)
Trang 5
60 Bài tập về ứng dụng hình học của tích phân (có đáp án năm 2024) - Toán 12 (trang 6)
Trang 6
60 Bài tập về ứng dụng hình học của tích phân (có đáp án năm 2024) - Toán 12 (trang 7)
Trang 7
60 Bài tập về ứng dụng hình học của tích phân (có đáp án năm 2024) - Toán 12 (trang 8)
Trang 8
Để xem toàn bộ tài liệu, vui lòng tải xuống
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!