Ứng dụng hình học của tích phân
Kiến thức cần nhớ
Tính diện tích hình phẳng
1. Hình phẳng giới hạn bởi một đường cong và trục hoành
Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) liên tục trên đoạn [a; b], trục hoành và hai đường thẳng x = a; x = b được xác định:
Ví dụ 1. Tính diện tích hình phẳng được giới hạn bởi y = 5x4 + 3x2, trục hoành và hai đường thẳng x = 0; x = 1.
Lời giải:
Diện tích hình phẳng cần tính là:
2. Hình phẳng được giới hạn bởi 2 đường cong
Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x); y = g(x) liên tục trên đoạn [a; b] và hai đường thẳng x = a; x = b được xác định:
(*).
- Chú ý.
Khi áp dụng công thức (*), cần khử dấu giá trị tuyệt đối của hàm số dưới dấu tích phân. Muốn vậy ta giải phương trình: f(x) – g(x) = 0 trên đoạn [a; b].
Giả sử phương trình có hai nghiệm c; d (c < d). Khi đó, f(x) – g(x) không đổi dấu trên các đoạn [a; c]; [c; d]; [d; b]. Trên mỗi đoạn đó, chẳng hạn trên [a; c] ta có:
Ví dụ 2. Tính diện tích hình phẳng được giới hạn bởi các đường thẳng x = 0; x = 2 và các đồ thị của hai hàm số y = x – 1 và y = x2 – 1.
Lời giải:
Phương trình hoành độ giao điểm của hai đường cong:
Tính thể tích
1. Thể tích của vật thể
Cắt một vật thể (H) bởi hai mặt phẳng (P) và (Q) vuông góc với trục Ox lần lượt tại x = a; x = b (a < b). Một mặt phẳng tùy ý vuông góc với Ox tại điểm x cắt (H) theo thiết diện có diện tích là S(x). Giả sử S(x) liên tục trên đoạn [a; b].
Khi đó, thể tích V của phần vật thể giới hạn bởi hai mặt phẳng (P) và (Q) được xác định bởi công thức:
2. Thể tích khối chóp và khối chóp cụt.
a) Cho khối chóp có diện tích đáy là B, chiều cao h.
Khi đó, thể tích của khối chóp là
b) Cho khối chóp cụt tạo bởi khối chóp đỉnh S có diện tích hai đáy lần lượt là B; B’ và chiều cao là h.
Thể tích của khối chóp cụt là:
Thể tích khối tròn xoay
- Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường cong y = f(x), trục hoành và hai đường thẳng x = a; x = b quanh trục Ox:
Ví dụ 3. Cho hình phẳng giới hạn bởi đường cong , trục hoành và hai đường thẳng x = 0; x = 2. Tính thể tích khối tròn xoay thu được khi quay hình này quanh trục Ox.
Lời giải:
Thể tích khối tròn xoay cần tính là:
Các dạng bài tập về ứng dụng hình học của tích phân
(Xem chi tiết trong file đính kèm bên dưới)
Dạng 1: Tính diện tích giới hạn bởi một đồ thị.
Dạng 2: Tính diện tích giới hạn bởi hai đồ thị.
Dạng 3: Tính thể tích vật thể tròn xoay dựa vào định nghĩa.
Dạng 4: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi một đồ thị.
Dạng 5: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi hai đồ thị.
Dạng 6: Tính thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi nhiều đồ thị.
Dạng 7: Một số bài toán thực tế ứng dụng tích phân.
Dạng 8: Bài toán thực tế.
Dạng 9: Các bài toán bản chất đặt sắc của tích phân.
Bài tập vận dụng (có đáp án)
Câu 1: Gọi h(t) (cm) là mức nước ở bồn chứa sau khi bơm nước được t giây. Biết rằng
và lúc đầu bồn không có nước. Mức nước ở bồn sau khi bơm nước được 6 giây xấp xỉ bằng:
Lời giải:
Mức nước trong bồn tại giây thứ t bằng:
Khi đó h(6) ≈ 2,66 cm .
Câu 2: Vận tốc của một vật chuyển động là
Quãng đường vật di chuyển trong khoảng thời gian 1,5 giây xấp xỉ bằng:
Lời giải:
Quãng đường vật di chuyển sau thời gian 1,5 giây bằng
Câu 3: Thể tích phần vật thể giới hạn bởi hai mặt phẳng x = 0 và x = 3 biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x(0 ≤ x ≤ 3) là một hình chữ nhật có hai kích thước là x và 2
Lời giải:
Câu 4: Thể tích khối xoay khi quay quanh trục hoành một hình phẳng giới hạn bởi đồ thị hàm số y = x(x-4) và trục hoành là?
Lời giải:
Phương trình hoành độ giao điểm của đồ thị và trục hoành :
Câu 5: Thể tích khối tròn khi quay quanh trục hoành một hình phẳng giới hạn bởi đồ thị hàm số y = sinxcosx, y = 0, x = 0, x = là:
Lời giải:
Thể tích khối tròn xoay là :
Câu 6: Thể tích khối tròn xoay khi quay quanh trục hoành một hình phẳng giới hạn bởi đồ thị hàm số y = lnx, y = 0, x = 2 là?
Lời giải:
Phương trình giao điểm của đồ thị hàm số và trục hoành :
ln x = 0 ⇔ x = 1
Thể tích khối tròn xoay cần tính là :
Câu 7: Thể tích khối tròn xoay khi quay quanh trục tung một hình phẳng giới hạn bởi hình tròn tâm I(2;0) bán kính R = 1 là:
Lời giải:
Phương trình đường tròn tâm I(2 ; 0), bán kính R = 1 là :
Đường tròn cắt trục tung tại hai điểm (0; 1) và( 0; -1).
Vậy ta có:
Bài 8: Gọi h(t) (cm) là mức nước ở bồn chứa sau khi bơm nước được t giây. Biết rằng
và lúc đầu bồn không có nước. Mức nước ở bồn sau khi bơm nước được 6 giây xấp xỉ bằng:
Lời giải:
Mức nước trong bồn tại giây thứ t bằng:
Khi đó h(6) ≈ 2,66 cm .
Bài 9: Vận tốc của một vật chuyển động là
Quãng đường vật di chuyển trong khoảng thời gian 1,5 giây xấp xỉ bằng:
Lời giải:
Quãng đường vật di chuyển sau thời gian 1,5 giây bằng
Bài 10: Thể tích phần vật thể giới hạn bởi hai mặt phẳng x = 0 và x = 3 biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x(0 ≤ x ≤ 3) là một hình chữ nhật có hai kích thước là x và 2
Lời giải:
Bài tập tự luyện (có đáp án)
(Xem trong file đính kèm bên dưới)